Homework 8 – Advanced Algorithms

Problem 1:

The *underlying* graph of a multigraph with self-loops G = (V, E) is a graph $G_u = (V, E_u)$ with the same set of vertices and self-loops removed and multiple edges between two vertices replaced by a single edge. Notice that E is a multi-set. We can define E_u as

 $(x, y) \in E_u \Leftrightarrow (x \neq y \text{ and there is an edge from } x \text{ to } y \text{ in } E).$

Find an O(|V| + |E|) algorithm that calculates the adjacency list representation of the underlying graph of a multigraph given by an adjacency list.

Problem 2:

Consider a directed Graph G = (V, E). A *sink* is a vertex $v \in V$ such that $\forall u \in V, u \neq v : (u, v) \in E$,

i.e. such that there is an edge from all other vertices to v. A sink $v \in V$ is *universal* if there is no edge from v to any other node. If $V = \{v_1, v_2, ..., v_n\}$, then the graph is given by an adjacency matrix $A = (a_{i,j})_{1 \le i,j \le n}$ with

$$a_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

Find an O(n) algorithm that given an adjacency matrix of size $n \times n$ determines whether the graph has a universal sink.

(Hint: Your algorithm has to be able to skip a row / column by looking at a single element).

You need to (a) specify the algorithm and (b) argue that your algorithm is O(n).