Introduction

Algorithms Thomas Schwarz, SJ

Modeling Algorithms

- Algorithms can be implemented, but are not equal to an implementation
- Performance is always concrete
 - We can only measure what is there
 - A given implementation of an algorithm
 - On a **given** platform
 - Under given circumstances

Modeling Algorithms

- Goal of algorithm design is not to invent well performing algorithms
 - Such a thing does not exist
- But to develop algorithms that work well under a large variety of circumstances

- Classic Model
 - RAM Model
 - A machine consists of a CPU and RAM
 - CPU has a large number of registers
 - Unit costs for:
 - Moving data between RAM and CPU
 - Calculating between registers

- RAM Model is not accurate
 - Operations do not cost the same
 - Moving data from RAM to Cache (cache miss) can take 200 nsec
 - Simple operations take 20 nsec

- Operations are not sequential:
 - Intel 486DX: 0.336 instructions per clock cycle at 33 MHz = 11.1 Million Instructions per Second (MIPS)
 - AMD Ryzen 7 1800X: 84.6 instructions per clock cycle at 3.6 GHz = 304,510 MIPS
- Now: many instructions run in parallel and execution overlaps

- Data and instructions are cached in several cache levels
 - Caches belong exclusively to a chip
 - Core has own L1 / L2 caches
 - Up till now:
 - Caches are coherent through invalidation
 - If one thread changes a cache content, other threads will not see the old content
 - Cache lines are invalidated and a read results in a cache miss

- Effectiveness of caches depends on the instructions and data
- Modern algorithm design:
 - Find cache aware / cache oblivious algorithms
 - Cache aware: Algorithm optimized depending on cache parameters
 - Cache oblivious: Algorithm does not need cache parameters in order to make efficient use of caches

- Threading
 - Many tasks can be performed in parallel
 - Processes can be broken into threads
 - Algorithms need to be <u>thread-safe</u>
 - Correct even when execution is split over several threads
 - Usual tool is locking
 - But locking can be detrimental to performance
 - Modern algorithms can be lock-free and threadsafe

- Branch prediction and speculative execution
 - Because cache misses are long
 - Processor will executes statements after a conditional statement
 - At the danger of these statements not being usable

Branch Prediction

Code

Block if X go to A else go to B Block A Block B

Branch Prediction

Block B	

Execute B if X is predicted to be false

Speculative Execution

Create two streams executing A and B in parallel, knowing that one stream's result are thrown out

- Too many if statements and branch prediction and speculative execution become ineffective
- Good algorithms can be designed that minimize branches

- Large Data Sets
 - RAM is limited and expensive
 - This might change soon with Phase Change Memories as RAM substitutes
 - Some data does not fit into RAM
 - Performance becomes dominated by moving data from storage into RAM and back
 - Modern algorithms can be designed to work well with certain storage systems

- Distributed Computing
 - Many tasks are to massive to work on a single machine
 - Distribute computation over many nodes
 - Performance can now be dominated by the costs of moving data between machines and / or coordinating between them
 - Distributed Algorithms

- Parallel Computation
 - GPU have millions of simple processing elements
 - Modern CUDA algorithms will make use of parallelization
 - Successors to earlier parallel algorithms

- Despite it all:
 - RAM model has allowed us to develop a set of efficient algorithms
 - To which we still add
 - However: Software engineers and algorithm designers need to be aware of architecture

- Calculating timings
 - Can depend on data
 - Example: Sorting algorithm can run much faster on almost sorted data (or much worse)
 - Can calculate maximum time (pessimistic)
 - Can calculate expected time
 - Needs to make assumption on probabilities
 - Can calculate minimum time (optimistic)
 - Usually a useless measure

- Probabilistic algorithms
 - Algorithms can make decisions based on probabilities
 - Useful in case there is an "adversary" who gets to select data
 - Example:
 - Cryptography:
 - Can always break cryptography by guessing keys
 - But the probability of breaking cryptography with reasonable high probability in a limited amount of time should be very small

Review of Landau Notation

Algorithm Evaluation

- Program solve **instances** of a problem
 - Good algorithms scale well as instances become large
- Clients are only interested how fast a given instance of a given size is solved
- Algorithm designers are interested in designing algorithms that work well independent of the size of the instance

Algorithm Evaluation

- Evaluate performance by giving maximum or expected run time of a program on an instance size *n*
 - Gives a function $\phi(n)$
 - Interested in asymptotic behavior

Algorithm Evaluation

• Example: Compare n^2 , $0.1n^3$, $0.01 \cdot 2^n$ for n = 0,100,200,...,1000

n	n**2	0.1n**3	0.01 2**n
0	0.000000e+00	0.000000e+00	1.000000e-02
100	1.000000e+04	1.000000e+05	1.267651e+28
200	4.00000e+04	8.000000e+05	1.606938e+58
300	9.000000e+04	2.700000e+06	2.037036e+88
400	1.600000e+05	6.400000e+06	2.582250e+118
500	2.500000e+05	1.250000e+07	3.273391e+148
600	3.600000e+05	2.160000e+07	4.149516e+178
700	4.900000e+05	3.430000e+07	5.260136e+208
800	6.400000e+05	5.120000e+07	6.668014e+238
900	8.100000e+05	7.290000e+07	8.452712e+268
1000	1.000000e+06	1.000000e+08	1.071509e+299

Asymptotic Growth

- To compare the growth use Landau's notation
 - Informally
 - **Big O:** f(n) = O(g(n)) means f grows slower or equally fast than g
 - Little O: f(n) = o(g(n)) means f grows slower or than g
 - Theta: $f(n) = \Theta(g(n))$ means f and g grow equally fast
 - **Omega:** $f(n) = \Omega(g(n))$ means f grows faster than g

- Exact definitions
 - Little o:

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- Exact definitions
 - Big O:

 $f(n) = O(g(n)) \Leftrightarrow \exists c > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : |f(n)| \le cg(n)$

- Exact definitions
 - Θ :

 $f(n) = O(g(n)) \Leftrightarrow \exists c_0 > 0 \ \exists c_1 > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : c_0 g(n) < f(n) \le c_1 g(n)$

- Exact definitions
 - Ω:

 $f(n) = \Omega(g(n)) \Leftrightarrow \exists c_1 > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : |f(n)| \ge c_1 g(n)$

- In general, we only look at positive functions
- For analytic functions (complex differentiable), there are easier ways to determine the relationship between functions

Example

• Use the definition to show that $2n^2 + 4n + 5 = O(n^2)$ for $n \to \infty$

Example

- $2n^2 + 4n + 5 \le 2n^2 + 4n^2 + 5n^2$ if $n \ge 1$
- $2n^2 + 4n + 5 \le 11n^2$ if $n \ge 1$
- Pick $c_0 = 12$ and $n_0 = 1$ and find that
 - $\forall n > n_0 2n^2 + 4n + 5 < 12 \cdot n^2$
- Therefore $2n^2 + 4n + 5 = O(n^2)$ for $n \to \infty$

Notice that we did not care about the exact constants

- Assume from now on that all functions f are positive
 - $\forall n \in \mathbb{N} : f(n) > 0$
- We also assume that the functions are analytic
 - Differentiable as complex functions (almost everywhere)
 - This includes all major functions used in engineering
 - Implies that they are infinitely often differentiable (almost everywhere)

• Assume
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a > 0$$

- (this means that we also assume that the limit exists)
- Then: $f(n) = \Theta(g(n))$ for $n \to \infty$

• Proof:

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a > 0$$

•
$$\Rightarrow \forall \epsilon > 0 \ \exists \delta > 0 \forall n > 1/\delta : \left| \frac{f(n)}{g(n)} - a \right| < \epsilon$$

• Definition of the limit

• $\Rightarrow \forall \epsilon > 0 \ \exists \delta > 0 \forall n > 1/\delta \ : \ a - \epsilon < \frac{f(n)}{g(n)} < a + \epsilon$

- Now we select one particular $\epsilon > 0$, namely $\epsilon = a/2$.
- For this selection, we have

•
$$\exists \delta > 0 \forall n > 1/\delta$$
 : $a/2 < \frac{f(n)}{g(n)} < (3/2)a$

- We also set $n_0 = \lceil 1/\delta \rceil$

•
$$\forall n > n_0$$
 : $a/2 < \frac{f(n)}{g(n)} < (3/2)a$

• Now we have

•
$$\forall n > n_0$$
: $\frac{a}{2}g(n) < f(n) < \frac{3a}{2}g(n)$

• Thus by definition: $f(n) = \Theta(g(n))$

• f(n) = o(g(n)) implies f(n) = O(g(n))

Proof:

$$f(n) = o(g(n))$$
 implies
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,$$

which implies $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall n > \frac{1}{\delta}$: $\frac{f(n)}{g(n)} < \epsilon$

We select $\epsilon = 1$, which implies

$$\begin{aligned} \exists \delta > 0 \ \forall n > \frac{1}{\delta} \ : \frac{f(n)}{g(n)} < 1 \end{aligned}$$
 We select $n_0 = \lceil \frac{1}{\delta} \rceil$ and obtain
$$\forall n > n_0 \ : \frac{f(n)}{g(n)} < 1 \end{aligned}$$

which implies

$$\forall n > n_0 : f(n) < g(n), \text{ i.e.}$$

$$f(n) = O(g(n)$$

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
 implies $f(n) = \Omega(g(n))$

• Proof is homework

Examples

- Relationship between log(n) and *n*?
- Evaluate the asymptotic behavior of $\frac{\log n}{n}$.
- The limit is of type $\frac{\infty}{\infty}$, so we use the theorem of L'Hôpital
- Take the derivatives of denominator and numerator

• Obtain
$$\frac{\frac{1}{n}}{1} = \frac{1}{n}$$
.
• Because $\lim_{n \to \infty} \frac{1}{n} = 0$, we have $\lim_{n \to \infty} \frac{\log n}{n} = 0$ and $\log(n) = o(n)$

Examples

• Relationship between 2^n and 3^n ?

•
$$\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

• Therefore $2^n = o(3^n)$.