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Amortized Analysis

 Determine the average time of a series of operations

* Allows to optimize average performance

e Example: Linear Hashing with fixed load factor «.
1

. Cost of bucket split is divided over — inserts
04



Amortized Analysis

 Aggregate Analysis
e Determine upper bound 7(n) on a sequence of n operations

e Average cost is then T(n)/n
* Accounting method:
 Most operations gets overcharged

 Accumulated overcharges are used to pay for later
operations

e Potential method:

* Model the “credit” as a potential



Aggregate Analysis

e Stacks have
* push
* pop
* empty

e Add a multipop(k) method that pops k elements (or
empties the stack if there are less than k elements on the
stack)

e standard operations are O(1)

e multipop is worst case O(n)



Aggregate Analysis

e Given a sequence of m stack operations on an initially empty stack

e Naive calculation:

e At most m elements on the stack at one time

e Therefore, worst case costis ~ m X m = O(m?)

* Better analysis:

e Combined number of steps of pops and multi-pops is smaller
or equal to the number of steps of pushes

e Therefore: combined number of steps is at most m

e Therefore: amortized costs O(1)



Aggregate Analysis

 Counters implemented as binary array

* |nterested in calculating the bit-flips

o111 (1{1t(1tj1r {1111 (1{1{1j1 7117110101

* Single increment can flip all the bits
e Array with k binary registers has 2% — 1 increments

e Does this mean that number of bit-flips for k
increments is ®(k) per increment?



Aggregate Analysis

 Write down binary numbers in order
 Observe
e Least Significant Bit (LSB) flips every time
e Second LSB flips every other time

e Third LSB flips every 2° times

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110



Aggregate Analysis

* Assume n increment operations with an arbitrary starting counter value

* Then number of bit-flips is less than

e =nx0.11111..., = 2n



Aggregate Analysis

* Aggregate cost of n increment operations is therefore
e <2n
e = 0O(n)

e Average cost per increment is 2



Accounting Method

e Stack costs:
e Push: 1
e Pop: 1

e Multipop(k): min(k, s) where s is the number of elements
In the stack

 Charges:
e Push: 2
e Pop: 0
 Multipop(k): O



Accounting Method

 Show that charges will pay for all operations.
* push pays for itself and for removing the element

e since we cannot remove elements that have not been
pushed, charged amount is always sufficient



 Counter:
 Charge 2 for every bit set to one
* This allows us to set the bit and to reset the bit
e Jo calculate costs of increment operation:
 Observe: increment only sets one bit to 1.
* Therefore:

* n increments cost at most 2n bit-flips

Accounting Method

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010



Potential Method

* Represent charges as potential energy

e Potential function @ maps each state of the data
structure to a number

* Amortized cost of an operation:

e actual cost + change in potential
 Implies:

e Amortized costs of n operations

e actual costs of n operations + change in potential



Potential Method

e Stack:
 Potential = number of elements in stack
 Potential can never be less than zero
e Amortized cost of a stack operation

 Push: cost plus change in potential =1 + 1

 Multipop / pop: cost plus change in potential = k - k



Potential Method

 Counter:
e Potential = number of bits set (= number of one bits)

e Amortized cost of an increment:

e 1f i increment resets ; bits:

e Costis 1 + 1,

e Amortized cost is

e cost + potential change
<@ +D+A-1)=2



Binary Trees and
Heaps

Thomas Schwarz, SJ



Behavior of Trees

e A full binary tree of depth n has

e 1+24+2-242.2.24 ... 421
e =(111...1), =2" -1 places

i

OO0 0000 ~

Total 15




Behavior of Trees

* Reversely:

* To store m elements in a binary tree:
* Need a tree of depth d such that
e 2D _1<m<29-1
* Equivalent to
e 2l <m+1 <2
e d—1<log,(m+1)<d
e d—1=|log,(m+1)]



Behavior of Trees

* This parsimony is not natural
e Random inserts: Trees have much larger depth

e Self-modifying trees restructure themselves in order to
get closer

* Importance:
e Searching an element takes time ~ to depth

* |nserting an element takes time ~ to depth



Behavior of Trees

e EXxperiment:

* |nsert n elements into a binary tree
e Get the depth
e Repeat 10,000 times

e Depict mean plus/minus standard deviation



Behavior of Irees
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Behavior of Trees

e On average

* Trees have more than twice necessary depth
e But on average

e Behavior is still logarithmic

 Theory: Height of a random binary search tree for a random
permutation of n elements is

o alog,(n)witha ~ 4.31107

e =2.988211log,(n)
e Robson 1979 / Devroye 1986



Decorating Binary Search
Trees

e General principle for Data Structures:

e (Can store more information in order to improve
performance

e Example:
» Removal of elements from a binary search tree
e Difficult because we need to find parent

 Can be made simpler by having a parent pointer



Binary Trees with Parent
Link

e Each node stores a link

3

to the parent
e Forroot, link is None
 Faster deletes at the
cost of more storage
per node g é 7??



Binary Trees with Parent
Link

e Expand to a key-value store by adding a field for record

e Add a parent link

class Node:

def 1nit (self, value, record):
self.value = wvalue
self.record = record

self.up, self.left, self.right = None, None, None

def  repr (self):
return "Node : {}, Value: {}, Record: {},

Left: {}, Right: {}, Up: {}".format
hex (1d(self)), self.value, self.record,
hex (1d(self.left)), hex(i1d(self.right)),
hex (1d (self.up)))



Binary Trees with Parent
Link

* We have to maintain the up link:

def 1nsert(self, wvalue, record):
new node = Node (value, record)
1f not self.root:
self.root = new node
else:
current = self.root
while True:
1f value < current.value:
1f current.left:
current = current.left
else:
current.left = new node
new node.up = current
return



Binary Trees with Parent
Link

 But deleting a record is still not trivial
e Special case when

e the tree is empty

def remove (self, wvalue) :
1f not self.root:
return False



Binary Trees with Parent
Link

def remove (self, wvalue) :
1f not self.root:
return False
current = self.root
while True:

1f not current:
return False

1f value == current.value:
break
1f value < current.value:
current = current.left
else:
current = current.right
1f current == None:

return False
to delete = current



Binary Trees with Parent
Link

e We still need to make additional case distinctions

 But we no longer need a stack to keep track of the
nodes

e (Case distinctions:
* No children:
e Just delete (unless we are deleting the root)
 One child

e Two children



Binary Trees with Parent
Link

* Removing node with one child

* Move child up and reset two links




Binary Trees with Parent
Link
e Special case if parent is root

elif not to delete.left and to delete.right:
# node has only a right child
parent = to delete.up

if not parent:
self.root = to delete.right

return True

else:
1f parent.left == to delete:
parent.left = to delete.right
to delete.right.up = parent

else:
parent.right = to delete.right

to delete.right.up = parent
return True



Binary Trees with Parent
Link
e Otherwise: reset two links

elif not to delete.left and to delete.right:
# node has only a right child
parent = to delete.up
1f not parent:
self.root = to delete.right
return True
else:
if parent.left == to delete:
parent.left = to delete.right
to delete.right.up = parent
else:
parent.right = to delete
to delete.right.up = parent
return True



Binary Trees with Parent
Link

e Two children:

* |dentify the next node in-order traversal
(154)
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Binary Trees with Parent
Link
e Two children:
* Find the next node in in-order traversal:
e Gototheright: current.right

* Then go always to the left

def min value node(a node):
current = a node
while current.left:

current = current.left
return current



Binary Trees with Parent
Link

e Two nodes

elif to delete.left and to delete.right:
#node has two children
leaf = Binary Tree.min value node (
to delete.right)
save value = leaf.value
save record = leaf.record
self.remove (leaf.value)
to delete.value = save value
to delete.record = save record



Binary Trees with Parent
Link

o Safe the values of the resulting leaf

elif to delete.left and to delete.right:
#node has two children
leaf =
Binary Tree.min value node (to delete.right)
print ('leaf', leaf)
save value = leaf.value
save record = leaf.record
self.remove (leaf.value)
to delete.value = save value
to delete.record = save record



Binary Trees with Parent
Link

e Then delete the leaf

* | cheat by using recursion

elif to delete.left and to delete.right:
#node has two children
leaf =
Binary Tree.min value node (to delete.right)
print ('leaf', leaf)
save value = leaf.value
save record = leaf.record
self.remove(leaf.value)
to delete.value = save value
to delete.record = save record



Binary Trees with Parent
Link

e Non-recursive in-order traversal

e Here is a tree with an additional set of links for in-order
traversal
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Binary Trees with Parent
Link

e What is the next node:
* |f the node has a right child:

e Go one to the right, then go to the left as much as
possible |




Binary Trees with Parent
Link

e What is the next node if there is no right cl;.h"ild:

e |f parent is to the left:
 Follow parents if they are to the Iéft

* Then take the first parent to the ri'"ght.,""v



Binary Trees with Parent
Link

e Can do in-order traversal without a stack or recursion



Binary Irees
using Arrays



Using Arrays

* |n atree, each node has up to two children
 Can organize nodes in an array

e | eave first spot open

5

27

3

12

23

32

2

4

7

16

22

1

2 3 4 5 6 / 8 9 10 11 12




Using Arrays

e | eft child of node at index 1
e Located at index 2i
e Right child of node at index 1

e | ocated atindex 2i + 1

— |19 | 565 (27| 3 (12|23 |32 | 2 4 7 |16 | 22

1 2 3 4 5 6 7 8 9 10 11 12

R @
9000]0



Using Arrays

e Parent of node at index i is located at index 1//2

I
. Mathematical notation: LEJ

— (19| &5 | 27| 3 |12 23 |32 | 2 4 /7 | 16 | 22

1 2 3 4 5 6 / 8 9 10 11 12




Using Arrays

* Right children are at odd indices, left children are even
indices

— (19| 5 | 27| 3 |12 |23 |32 | 2 4 /7 | 16 | 22

1 2 3 4 5 6 / 8 9 10 11 12




Using Arrays

* We can calculate the index if we are given a sequence of
directions

— (19| 65 (27| 3 |12 |23 |32 | 2 4 /7 |16 | 22 | 25

1 2 3 4 5 6 7 8 9 10 11 12 13

Ar  ((172+1)2)2+1 =13




Using Arrays
e Definer(n) :=2n+1,1Il(n) :=2n
e Thennodeis atindex (0,20, _{°...°0,°0;)(1)

where 0; =

[ if we go left in step i
r if we go right in step 1

r
— |19 65 |27 | 3 |12 |23 |32 | 2 4 7 |16 | 22 | 25
1 2 3 4 5 6 7 8 9 10 11 12 13
I
r
(0 @@

rr - ((12+1)*2)*2+1 =13



Using Arrays

e Can we do something about the unused first element in
the array?

 We just need to adjust the index: by adding 1 and
subtracting 1



Using Arrays

e Childrenofnodeiarenow?2-(i+1)—1=2-i+1
and2- G+ DH)+1)—1=2-1+42

19| 5 [ 27| 3 |12 |23 |32 | 2 4 /| 16 | 22 | 25

0 1 2 3 4 5 6 / 8 9 10 11 12




Using Arrays

e Parent of a node located at index 1 is located

'+ 1
o atindex[l 5 | =1

19| 5 (27| 3 |12 |23 | 32 | 2 4 /7 | 16 | 22 | 25

2 3 4 5 6 7 8 9 10 11 12




Using Arrays

* One advantage:

 We automatically have a way to find the parent



Priority Queue

 ADS with
* |nsertion
* Popping maximum element

e Example: insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2, pop,
POP

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 10

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 7

 Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: S

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 4



Priority Queues

e Simplistic implementation
e Alist

e Whenever we look for an element, we look for the
maximum of the list

 Run time: Proportional to the length of the list



Priority Queues

* Favorite implementation:
e Heap:
* A complete binary tree
* Tree is maximum balanced

 That is partially ordered



Priority Queues

* Heaps as binary tree
e Complete:
* NO nodes missing

e |Last generation filled
from left

e Partially ordered:

e parent has larger
value than child




Priority Queues

e Operations: Insertion

e |nsert at the next
Spot

e |fthe new node is @
larger than the

parent: (11} (o)
e swap with

parent (7) (o) (5) (2)
ORORONONON -




Priority Queues

v

ORONORORONO

e This is repeated

* |f necessary




Priority Queues

e Notice:

 The only violation of
order can be with @

parent
0,
() (e OO
ORORORORONO




Priority Queues

e There are at most
log,(n) swaps

e Compared ton




Priority Queues

e Remove Maximum:
e Maximum is at the top, remove it

* Move last element into the top position




Priority Queues

* Then restore the heap property

* Move up the larger sibling




Priority Queues

e Until there is no violation



Priority Queues

* |mplementation:
* Need to implement two "heapify" operations
e Going up for insert

e Going down for extract maximum



Priority Queues

e Define a class PQ with class methods for index

calculation

class POQ:

def

def

def

def

init (self):
[ ]

self.array =
up (1ndex) :
return (index+1)//2-1
left (1ndex) :

return 2*index + 1
right (1ndex) :

return 2*1ndex + 2



Priority Queues

* |nsert at the end of the array

e but note the index

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array|[parent] =
self.array|[parent], self.array[n]

n = parent

else:
return



Priority Queues

e Adjust by swapping with parent

e |Index of current element is n

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return



Priority Queues

e (Calculate the parent node

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up(n)

1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return



Priority Queues

* And swap if necessary

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)

if self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array[parent], self.array[n]
n = parent
else:
return



Priority Queues

e Then reset the index

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return



Priority Queues

e Extract maximum:
e Maximum is always at position 0
e Swap its value with the last element in the array
 Then heapify:



Priority Queues

 This is also recursive, but proceeds from top to bottom
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Priority Queues

e Swap last and first node

e Delete from node

def get max(self):
ret val = self.arrayl[0]
last = self.array[—1]
del self.array[-1]
self.array[0] = last
n=0



Priority Queues

* Now recursively recover the heap property
* Make case distinctions according to whether
* both children exist
e only the left child exist

* no children present



Priority Queues

e Both children exist

def get max(self):

while n < len(self.array):

left = PQ.left (n)

right = PQ.right (n)

if right < len(self.array):
1f self.array[n] > self.arrayl[left] and

self.array[n] > self.array[right]:
return ret val

1f self.array([left] < self.arrayl[right]:

m = right
else:
m = left
self.array[n], self.array[m] = self.array[m],

self.array[n]
n = m



Priority Queues

 Heap property is not violated

def get max(self):

while n < len(self.array):

left = PQ.left (n)

right = PQ.right (n)

1f right < len(self.array):
if self.array[n] > self.array[left] and

self.array[n] > self.array[right]:
return ret val

1f self.array([left] < self.arrayl[right]:

m = right
else:
m = left
self.array[n], self.array[m] = self.array[m],

self.array[n]
n = m



Priority Queues

e Select the larger of the two children for swapping

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
if self.array[left] < self.array[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.arravy[n]
n = m
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Priority Queues

e Swap

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m



Priority Queues

e Swap

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m



Priority Queues

* And do not forget to set yourself up for recursion

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.arravy[n]
n=m



Priority Queues

* Only one child can exist (but then it has to be the left one)

 Heap property might not be violated

elif left < len(self.array):
if self.array[n] > self.array[left]:

return ret_val
m = left

self.array[n], self.array[m]
self.array[m], self.array[n]

n = 1m



Priority Queues

* Only one child can exist (but then it has to be the left one)

e But if it is, we have only one candidate for swapping

elif left < len(self.array):
if self.array[n] > self.array[left]:
return ret val
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m



Priority Queues

* Per defensive programming, we pretend that we might
have to go on:

elif left < len(self.array):
1if self.array[n] > self.array[left]:
return ret val
m = left
self.array|[n], self.array[m] =
self.array[m], self.array[n]
n=m



Priority Queues

e Difficult Homework:

e Extract Maximum and insertion of a new element are
sometimes combined

* |n this case, we can save work by:

* Inserting the new element at the beginning of the
array

 work ourselves downwards to restore the heap
property

* |mplement this



Priority Queues

e Other operations:
* peek
e returns the maximum, but does not remove it
* |S_empty

 checks whether the array is empty



Priority Queues

e Costs of operations

e Priority queue with n elements uses log,(n) steps in
order to heapify

e Peek and is_empty run in constant time



Priority Queues

 Python implementation of priority queues
* heapq implements a minimum heap

e Uses a Python list

heapg.heappush(lista, element)

heapg.heappop(lista)



Priority Queues

 This is an efficient implementation

e We can "kludge" a max heap implementation for
integers by observing that the maximum of numbers is
the negative of the negative integers

def smallpush(lista, element):
heapg.heappush(lista, -element)
def smallpop(lista):
return —-heapg.heappop(lista)



Running Medians

* Task:
* We are given a stream of numbers

e At any time, want to be able to determine the median of these
numbers

e Example:
e Wegets, 3,1,10, 2
* Median is now 3
e Wethengeti2, 1,2
* We have seen 1,1,2,2,3,5,10,12

* Median is now 2.5 (mean of 2 and 3)



Running Medians

 Nalve implementation
e Just keep an ordered list around
e Better way:
o Keep two sublists of equal size
e Small and Big

e All elements in Small are smaller than all elements in
Big

e Use heaps in order to easily extract the maximum of
Small and the minimum of Big



Running Medians

 Adding a new number:
e |f the left heap is smaller, then insert there

e |f the left and right heap have equal size, insert in the
right heap

e But need to maintain the invariant:

e All elements in the left heap are smaller (or equal)
than all elements in the right heap



Running Medians

e Example: Inserting 5 into
e Left: 0,1,1,2,2 Right: 3,4,6,7,7,9
e We need to insert into Left, but this violates the invariant
e Extract the minimum from right (3)
 Add the minimum to the left
e Add 5 to right
e Left:0,1,1,2,2,3 Right: 4,5,6,7,7,9



Running Medians

* Insert another 5:
e Left:0,1,1,2,2,3 Right: 4,5,6,7,7,9
* Rule say insert to the Right:
e Since max(left) < 5:
* No problem:

e Left:0,1,1,2,2,3 Right: 4,5,5,6,7,7,9



Running Medians

e |nsert another 5:
e |nsert into Left:

e But min(right) = 4 which is smaller than 5

* Inserting 5 into left violates the invariant
* Need to do something about it:
e Extract minimum from Right
e Insert this minimum into Left
* Insert new element into Right

e Left:0,1,1,2,2,3,4 Right: 5, 5,6, 7,7, 9



Running Medians

e (Calculating medians:
e |f len(Left) < len(Right):
e Median is peek(Right)
 Otherwise:

e Median is (peek(Right)+peek(Left))/2



Tiered Bitvectors

e Given a finite universe indexed by {0,1,...,n — 1}:
e U={x:i€{0,1,..,n—1})
e A bit vector represents subsets of U

0 ified
o 0, g= {1 fidS (Kronecker delta)

e § C U corresponds to the bit-vector

. Big:i€{0,1,....,n—1})



Tiered Bitvectors

e Toinsert Xx; into the set:

e Set bitito 1

e To delete x; from the set:

e Sethitito0

 To lookup whether x; € §:

e Check value of bit 1



Tiered Bitvectors

e Minlndex, Maxlndex, Predecessorindex, Successorlndex
are extremely slow

* O(|U])



Tiered Bitvectors

* If memory is (as is typical) accessed via cache-lines

 Words of length L = 64B
e Break the universe into | U|/L pieces of size L
¢ Uo, Ul’ Uz, coos Un/L

* |ntroduce a master bitvector by

* TR 1 #SNU# 0



Tiered Bitvectors

00101000100

00000000 |00000000|00100011|00000000|00000010|00000000|00000000|00000000]00100000|00000000]100000000




Tiered Bitvectors

* QOrdered dictionary operations run in time
e O(U/L+ L)

e This is minimized when L =4/ U



Tiered Bitvectors

e What are the operations?



Tiered Bitvectors

* |nserting to a set:
e Set master bitvector bit
e Set partial bitvector bit

e Deleting from a set
 Reset partial bitvector bit

o |f partial bitvector is empty: Reset master bitvector bit



Tiered Bitvectors

* |S-empty:
 Check master bitvector only has entries 0
* min:

 One min operation on the master bitvector, one min
operation on partial bitvector



Tiered Bitvectors

 Obviously, we can extend this from two tiers to many
tiers.

e Result is a tree



Fibonacci Heaps



Mergeable Heaps

e Mergeable Heaps are ADS with

e Make-Heap

e |nsert(H, x)

e Minimum(H)

e Extract-Min(H)

o Union(H,, H)
 Fibonacci heaps in addition have

e Decrease-Key(H, x, new_val)

e Delete(H,x)



Mergeable Heaps

Binary Heap Fibonacci Heap
(worst-case) (amortized)

Procedure

Make-Heap

Insert

Minimum

Extract-Min

Union

Decrease-key

Delete




Fibonacci Heaps

* Fibonacci heaps:
e Useful when Extract-Min and Delete are rare

e E.g. graph algorithms where we use decrease-key in
order to update edges

* Minimum spanning trees

e Single-source shortest paths



Fibonacci Heaps

* Fibonacci heap:
e Collection of rooted trees that are min-heap ordered:
 Every child’s key is larger than its parent’s key

e Example:

minimum




Fibonacci Heaps

* Each node has a link to their parent

e All children (including root list) are in a double linked child
list

e Parent has one link to the child list

minimum

23 7 3 17

71~ 1
>




Fibonacci Heaps

e Double linked list:

e Allows constant time inserts and fusion



Fibonacci Heaps

e Each node has attributes
* Number of children in degree

e Node x has mark x.mark to indicate whether node x
has lost a child since the last time x was made a child
of another node

* Newly created nodes are unmarked

e Node x becomes unmarked whenever it iIs made
child of another node

e Used for DecreaseKey operation



Fibonacci Heaps

 Access to a Fibonacci node through pointer to minimum
key node

 Each Fibonacci node stores
e Links to left and right sibling
e Link to parent unless root

e Link into the child list



Fibonacci Heaps

e Use potential method
e {(H) : number of trees in the root list
e m(H): number of marked nodes

e Potential ®(H) = t(H) + 2m(H)

* Unit of potential can pay for all constant time
operations



Fibonacci Heap Operations

 Creating a new Fibonacci Heap
e Hn=20
e H.min = Null
e« O(H) =0

e amortized cost is O(1)



Fibonacci Heaps

e |nsert(H,x)
 Create an otherwise empty tree with x as root
e If there is no element in the heap (H.min = Null):

 Create a root list for H containing x only

e (Otherwise
e |nsert the new tree into the root list

e Check whether H.min needs to be updated

e Amortized costs: O(1) + 1 = O(1)



Fibonacci Heaps




Fibonacci Heaps

e Minimum
e Just returns a pointer to the minimum node

e Amortized costs is O(1)



Fibonacci Heaps

e Uniting two heaps
e Concatenate the root lists

e Change in potential is zero

e Amortized costs is O(1)



Fibonacci Heaps

e Extracting the minimum

e This iIs where we consolidate

z=H.min
1f z # NULL:
for each child x of z:
add x to the root list of H
X.p = NULL
remove z from root list
if z == z.right: #z only node
H.min = NULL
else:
H.min = z.right
CONSOLIDATE (H)
H.n —= 1
return z



Fibonacci Heaps

@-O-@- Z ----- @g

Moving children of H.min into the root list



Fibonacci Heaps

@-O-@- Z ----- @g
@-O-@- Z ----- @:i:’\

nnnnnnnnnnnnnnnnnn




Fibonacci Heaps

e Consolidation:
 Repeat:

e Find two nodes in the root list with trees of the same
height

e Starting at the current link H.min
e Unify the two trees making the smaller one the root

e (Clears mark on the looser



Fibonacci Heaps

e Consolidation:
* To find nodes in the root list that can be merged

e Create an array A[O ... D(H.n)] of nodes in the root
tree

e D(H.n) is the maximum degree of a tree rooted in a
node in the root list

 Fill into A



Fibonacci Heaps

oNoRoS Z ----- @:i§
oNoRoS Z ----- @:: ----- §

: NULL
: NULL
: NULL
: NULL

> > > >
LN =S

: NULL
17

: NULL
]: NULL

> > > >
LN 2O




Fibonacci Heaps

oNoRoS Z ----- @

- NULL
17
: 24
]: NULL

> > > >
LN =S




Fibonacci Heaps

® OO Z ----- @

l: 23
1:17
l: 24
: NULL

> > > >
LN 2O




Fibonacci Heaps

H.min

1 23,7
17

: 24

: NULL

> > > >
LN = O

We cannot insert 7 into A[0], so we combine



Fibonacci Heaps

H.min

> > > >
LN =S

We remove 7 from the array. We then merge.

After merging, we try to insert 7 into A[1]. Since
there is already an occupant there, we find another
merge candidate

: NULL
17,7
: 24

: NULL



Fibonacci Heaps

H.min

: NULL
: NULL
24,7

: NULL

> > > >
LN 2O

Inserting the new tree into A gives us
another merge candidate



Fibonacci Heaps

J: NULL
J: NULL
2]: NULL

> > > >
W N = O




Fibonacci Heaps

21
: NULL
: NULL

> > > >
LN =S

We insert 21 into the array.



Fibonacci Heaps

0]: 21
[1]: 18
2]: NULL

> > > >
WN = O

And then insert 18.



Fibonacci Heaps

0]: 21, 52
[1]: 18
2]: NULL

> > > >
WN = O

Inserting 52 gives us another merge candidate



Fibonacci Heaps

: NULL
: 18, 21
: NULL

> > > >
LN = O

Which leads to another merger



Fibonacci Heaps

]: NULL
- NULL
1: 18

> > > >
LN 2O

We move on to the next node



Fibonacci Heaps

1: NULL
1: 38
1: 18

> > > >
LN 2O

We insert it into the array.



Fibonacci Heaps

H.min

]: NULL
]1: 38
:18
7,7

> > > >
LN 2O

We then move on to the next node. When we
iInsert, we see that this one is already in A and
that we are done merging.



Fibonacci Heaps

1: NULL
1: 38
1: 18

> > > >
LN 2O

We now find the new minimum.



Fibonacci Heaps

e Combining two nodes

* X.key < y.key

def fib heap link(H, y, x):
Assert x.key < vy.key
remove y from root list of H
y.mark = False



Fibonacci Heaps

e Consolidate:

def consolidate (H) :
A = [None for 1 in range(D(H.n)) ]
for w 1n H.root list:
while (A[w.degree]) :
degree = A[w.degree]
y = A[degree] # candidate for merger
1f w.key > y.key:
Wy ¥V T Yr W
fib heap link (H,y,w)
A[degree] = Null
degree += 1
Alw.degree] = w
reset H.min



Fibonacci Heaps

* Costs:
* Potential:
e Potential before is t(H)+2m(H)
» Potential after is D(n)+1+2m(H)
e because A has D(n) entries
* pbecause nobody gets marked
* Work done:
* t(H) for going through the root list
* < D(n) for inserting the children of minimum

e Amortized costs:

.« < ODM) + 1(H)) + (D) + 1+ 2m(H) — t(H) — 2m(H)) = O(D(n))



Fibonacci Heaps

* Decrease akey
 Find parent p
o if p and x.key < p.key:
e CUT(H,x,y)
e CASCADING-CUT(H,y)

* |f necessary, adjust H.min



Fibonacci Heaps

e Cut(H, x,y)

def cut (H, x, V):
remove x from child list of y

yv.degree —-= 1
add x to root list of H
X.p = Null

x.mark = False



Fibonacci Heaps

e Cascading Cut

def cascading cut (H,y):
z = y.p # parent of vy

1f z:
1f y.mark == False:
yv.mark = True
else:

cut (H, y, 2z)
cascading cut (H, z)



Fibonacci Heaps




Fibonacci Heaps




Fibonacci Heaps

Remove node (and any descendants)



Fibonacci Heaps




Fibonacci Heaps

Second operation

Change key from 3510 5



Fibonacci Heaps

Second operation

H.min

Change key from 3510 5



Fibonacci Heaps




Fibonacci Heaps

Mark parent.
But parent is already marked, so:
Cascading Cut!



Fibonacci Heaps

26 IS removed.
Look at 24: It is also marked



Fibonacci Heaps

Cut 24, unmarking it.
Cut stops here, parent is unmarked.



Fibonacci Heaps




Fibonacci Heaps

Change in potential:
e (Cut creates a new tree and potentially clears a mark

e Each Cascading-Cut cuts a marked node and clears
the mark bit (with exception of the last one)

H now has c-1 trees produced by cascading cuts and the
tree at x: t(H)+c trees

At most m(H)-c+2 marked nodes

<HH)+c+2mH) —c+2) — t(H) = 2m(H) = 4 — ¢



Fibonacci Heaps

* Amortized cost of decrease key:

e O(c)+4—-c=0(])



Fibonacci Heaps

 Deleting a node

® def delete (H, x):
decrease key(H,x,-1infty)
extract min (H)



Fibonacci Heaps

e |eft to investigate:

e Upper bound D(n) on the degrees is O(log(n))

Lemma: F., =1+ ZF



Fibonacci Heaps
1+4/5

2

o Lemma: F}_ , > q§k with ¢p =



Fibonacci Heaps

e Lemma: Let x be any node in a Fibonacci heap with
X.degree = k. Lety;,y,, ...,y be the children of x in the
order in which they were linked to x (by consolidate).

Then:
y;.degree > 0, y..degree >i—2foralli=23,...,k



Fibonacci Heaps

* Proof:
e Clearly, y, .degree > 0
e Assume a general i > 2.

« When CONSOLIDATE links y;, to x, then all of y,, y,, ...
V;_1 was linked to x

 This means x . degree > 1

e Because y, is linked to x only if x . degree =y, . degree

e y..degree > 1 — 1



Fibonacci Heaps

e But in the mean-time, the degree of y; might have
decreased

e But Cascading-Cut would cut y; from X if y; has
lost more than two children

e Therefore y;.degree > i — 2



Fibonacci Heaps

e Lemma: Let x be any node in a Fibonacci heap and let
k = x .degree. Then size(x) > F} ., > d*,

o Let s, denote the minimum possible size of any node of
degree k in a Fibonacci heap.
e so=1, 5 =2

 Adding children does not decrease the node’s size, the
value of s, increases monotonically with k.



Fibonacci Heaps

Notice s, < size(x), so giving a lower bound on s, is
sufficient

Take a node z with
e 7.degree =k size(z) = §;,

Let y{, V5, ..., ¥, denote the children of 7 in the order in
which they were linked to 7

To bound s,;, we have one for z and one for y, and the
rest



Fibonacci Heaps

* This gives

o size(x) > s,

k
., 22+ Z 3y.degree
i=2

k
> 2+ Z S;_, because y;.degree > [ — 2 by Lemma
=2
and monotonicity of s,



Fibonacci Heaps

e We prove by induction that s; > £/,

* |nduction step:



Fibonacci Heaps

Let x be the node with maximum degree into an n-node
Fibonacci Heap

Degree of x is k
By lemma, n > size(x) > ®*
Thus: logg(n) > k

Thus: maximum degree is O(log n)



van Emde Boas Trees

e QOperations of priority queues have at least one
logarithmic operation

e If everything would be less, then we could sort in time
n-logn

 But we can sort an array of integersinrange 1 ... nin
time O(n)



van Emde Boas Trees
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van Emde Boas Trees
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* Finding the minimum value in logarithmic time:

van Emde Boas Trees

e Start at root

* Head down taking the leftmost one
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van Emde Boas Trees

 We can combine nodes into a tree with higher fan-out

1

1127




van Emde Boas Trees

e Assume that the number 11 of elements in the universe is

k
u = 2%

e To build a recursive structure:

e Recurrence T(u) = T(v/u) + O(1)
o Setting m = log,(u), S(m) = T(2™)
e Recurrence is S(m) = S(m/2) + O(1)
o MT = S§(m) = O(log,(m))
o T(u) = T(2") = S(m) = O(log,(m)) = O(log,(log,(u)))



van Emde Boas Trees

 Proto-vEM-structures for u
e y = 2: array of two bits
e u =22 with k > 1:
e summary pointer towards parent

e cluster towards children

4 )

T

Vu proto-vUB(Vu) structures

summary

R

proto-vUB(Vu) structure




van Emde Boas Trees
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van Emde Boas Trees

e QOperations on proto-vEB-Trees

e Foragivenx € U.:

X
. high(x) = |—=] number of cluster

u
e low(x) =x (mod \/Z) position of x in cluster

e index(x,y) = x\/ﬁ + y rebuilds index from number
of cluster and position in cluster



van Emde Boas Trees

e QOperations on proto-vEB-Trees

e Membership

def pvEB member (V, x) :
1f V.u == 2:
return V.A[X]
else:
return pvEB member (V.cluster[high(x)].low (x)

e Runtime has recurrence T(u) = T(\/Z) + O(1)



van Emde Boas Trees

e QOperations on proto-vEB-Trees



van Emde Boas Trees

e QOperations on proto-vEB-Trees



van Emde Boas Trees

e QOperations on proto-vEB-Trees



van Emde Boas Trees

e QOperations on proto-vEB-Trees
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e QOperations on proto-vEB-Trees



van Emde Boas Trees

e QOperations on proto-vEB-Trees
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