Amortized Analysis

Thomas Schwarz, SJ

Amortized Analysis

 Determine the average time of a series of operations

* Allows to optimize average performance

e Example: Linear Hashing with fixed load factor «.
1

. Cost of bucket split is divided over — inserts
04

Amortized Analysis

 Aggregate Analysis
e Determine upper bound 7(n) on a sequence of n operations

e Average cost is then T(n)/n
* Accounting method:
 Most operations gets overcharged

 Accumulated overcharges are used to pay for later
operations

e Potential method:

* Model the “credit” as a potential

Aggregate Analysis

e Stacks have
* push
* pop
* empty

e Add a multipop(k) method that pops k elements (or
empties the stack if there are less than k elements on the
stack)

e standard operations are O(1)

e multipop is worst case O(n)

Aggregate Analysis

e Given a sequence of m stack operations on an initially empty stack

e Naive calculation:

e At most m elements on the stack at one time

e Therefore, worst case costis ~ m X m = O(m?)

* Better analysis:

e Combined number of steps of pops and multi-pops is smaller
or equal to the number of steps of pushes

e Therefore: combined number of steps is at most m

e Therefore: amortized costs O(1)

Aggregate Analysis

 Counters implemented as binary array

* |nterested in calculating the bit-flips

o111 (1{1t(1tj1r {1111 (1{1{1j1 7117110101

* Single increment can flip all the bits
e Array with k binary registers has 2% — 1 increments

e Does this mean that number of bit-flips for k
increments is ®(k) per increment?

Aggregate Analysis

 Write down binary numbers in order
 Observe
e Least Significant Bit (LSB) flips every time
e Second LSB flips every other time

e Third LSB flips every 2° times

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110

Aggregate Analysis

* Assume n increment operations with an arbitrary starting counter value

* Then number of bit-flips is less than

e =nx0.11111..., = 2n

Aggregate Analysis

* Aggregate cost of n increment operations is therefore
e <2n
e = 0O(n)

e Average cost per increment is 2

Accounting Method

e Stack costs:
e Push: 1
e Pop: 1

e Multipop(k): min(k, s) where s is the number of elements
In the stack

 Charges:
e Push: 2
e Pop: 0
 Multipop(k): O

Accounting Method

 Show that charges will pay for all operations.
* push pays for itself and for removing the element

e since we cannot remove elements that have not been
pushed, charged amount is always sufficient

 Counter:
 Charge 2 for every bit set to one
* This allows us to set the bit and to reset the bit
e Jo calculate costs of increment operation:
 Observe: increment only sets one bit to 1.
* Therefore:

* n increments cost at most 2n bit-flips

Accounting Method

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010

Potential Method

* Represent charges as potential energy

e Potential function @ maps each state of the data
structure to a number

* Amortized cost of an operation:

e actual cost + change in potential
 Implies:

e Amortized costs of n operations

e actual costs of n operations + change in potential

Potential Method

e Stack:
 Potential = number of elements in stack
 Potential can never be less than zero
e Amortized cost of a stack operation

 Push: cost plus change in potential =1 + 1

 Multipop / pop: cost plus change in potential = k - k

Potential Method

 Counter:
e Potential = number of bits set (= number of one bits)

e Amortized cost of an increment:

e 1f i increment resets ; bits:

e Costis 1 + 1,

e Amortized cost is

e cost + potential change
<@ +D+A-1)=2

Binary Trees and
Heaps

Thomas Schwarz, SJ

Behavior of Trees

e A full binary tree of depth n has

e 1+24+2-242.2.24 ... 421
e =(111...1), =2" -1 places

i

OO0 0000 ~

Total 15

Behavior of Trees

* Reversely:

* To store m elements in a binary tree:
* Need a tree of depth d such that
e 2D _1<m<29-1
* Equivalent to
e 2l <m+1 <2
e d—1<log,(m+1)<d
e d—1=|log,(m+1)]

Behavior of Trees

* This parsimony is not natural
e Random inserts: Trees have much larger depth

e Self-modifying trees restructure themselves in order to
get closer

* Importance:
e Searching an element takes time ~ to depth

* |nserting an element takes time ~ to depth

Behavior of Trees

e EXxperiment:

* |nsert n elements into a binary tree
e Get the depth
e Repeat 10,000 times

e Depict mean plus/minus standard deviation

Behavior of Irees

20 A

18 -

16 -

14 -

12 -

10 -

0 100 200 300 400 500

Behavior of Trees

e On average

* Trees have more than twice necessary depth
e But on average

e Behavior is still logarithmic

 Theory: Height of a random binary search tree for a random
permutation of n elements is

o alog,(n)witha ~ 4.31107

e =2.988211log,(n)
e Robson 1979 / Devroye 1986

Decorating Binary Search
Trees

e General principle for Data Structures:

e (Can store more information in order to improve
performance

e Example:
» Removal of elements from a binary search tree
e Difficult because we need to find parent

 Can be made simpler by having a parent pointer

Binary Trees with Parent
Link

e Each node stores a link

3

to the parent
e Forroot, link is None
 Faster deletes at the
cost of more storage
per node g é 7??

Binary Trees with Parent
Link

e Expand to a key-value store by adding a field for record

e Add a parent link

class Node:

def 1nit (self, value, record):
self.value = wvalue
self.record = record

self.up, self.left, self.right = None, None, None

def repr (self):
return "Node : {}, Value: {}, Record: {},

Left: {}, Right: {}, Up: {}".format
hex (1d(self)), self.value, self.record,
hex (1d(self.left)), hex(i1d(self.right)),
hex (1d (self.up)))

Binary Trees with Parent
Link

* We have to maintain the up link:

def 1nsert(self, wvalue, record):
new node = Node (value, record)
1f not self.root:
self.root = new node
else:
current = self.root
while True:
1f value < current.value:
1f current.left:
current = current.left
else:
current.left = new node
new node.up = current
return

Binary Trees with Parent
Link

 But deleting a record is still not trivial
e Special case when

e the tree is empty

def remove (self, wvalue) :
1f not self.root:
return False

Binary Trees with Parent
Link

def remove (self, wvalue) :
1f not self.root:
return False
current = self.root
while True:

1f not current:
return False

1f value == current.value:
break
1f value < current.value:
current = current.left
else:
current = current.right
1f current == None:

return False
to delete = current

Binary Trees with Parent
Link

e We still need to make additional case distinctions

 But we no longer need a stack to keep track of the
nodes

e (Case distinctions:
* No children:
e Just delete (unless we are deleting the root)
 One child

e Two children

Binary Trees with Parent
Link

* Removing node with one child

* Move child up and reset two links

Binary Trees with Parent
Link
e Special case if parent is root

elif not to delete.left and to delete.right:
node has only a right child
parent = to delete.up

if not parent:
self.root = to delete.right

return True

else:
1f parent.left == to delete:
parent.left = to delete.right
to delete.right.up = parent

else:
parent.right = to delete.right

to delete.right.up = parent
return True

Binary Trees with Parent
Link
e Otherwise: reset two links

elif not to delete.left and to delete.right:
node has only a right child
parent = to delete.up
1f not parent:
self.root = to delete.right
return True
else:
if parent.left == to delete:
parent.left = to delete.right
to delete.right.up = parent
else:
parent.right = to delete
to delete.right.up = parent
return True

Binary Trees with Parent
Link

e Two children:

* |dentify the next node in-order traversal
(154)

G0 (z22)
@ G @D @B

5

P
<

A

Q/@

Binary Trees with Parent
Link
e Two children:
* Find the next node in in-order traversal:
e Gototheright: current.right

* Then go always to the left

def min value node(a node):
current = a node
while current.left:

current = current.left
return current

Binary Trees with Parent
Link

e Two nodes

elif to delete.left and to delete.right:
#node has two children
leaf = Binary Tree.min value node (
to delete.right)
save value = leaf.value
save record = leaf.record
self.remove (leaf.value)
to delete.value = save value
to delete.record = save record

Binary Trees with Parent
Link

o Safe the values of the resulting leaf

elif to delete.left and to delete.right:
#node has two children
leaf =
Binary Tree.min value node (to delete.right)
print ('leaf', leaf)
save value = leaf.value
save record = leaf.record
self.remove (leaf.value)
to delete.value = save value
to delete.record = save record

Binary Trees with Parent
Link

e Then delete the leaf

* | cheat by using recursion

elif to delete.left and to delete.right:
#node has two children
leaf =
Binary Tree.min value node (to delete.right)
print ('leaf', leaf)
save value = leaf.value
save record = leaf.record
self.remove(leaf.value)
to delete.value = save value
to delete.record = save record

Binary Trees with Parent
Link

e Non-recursive in-order traversal

e Here is a tree with an additional set of links for in-order
traversal

@A--.-.-.-..

7
I\

- 1
4
RN
v

N

4!
4

AN
v i

.
.
.
.

.

< -

N

Binary Trees with Parent
Link

e What is the next node:
* |f the node has a right child:

e Go one to the right, then go to the left as much as
possible |

Binary Trees with Parent
Link

e What is the next node if there is no right cl;.h"ild:

e |f parent is to the left:
 Follow parents if they are to the Iéft

* Then take the first parent to the ri'"ght.,""v

Binary Trees with Parent
Link

e Can do in-order traversal without a stack or recursion

Binary Irees
using Arrays

Using Arrays

* |n atree, each node has up to two children
 Can organize nodes in an array

e | eave first spot open

5

27

3

12

23

32

2

4

7

16

22

1

2 3 4 5 6 / 8 9 10 11 12

Using Arrays

e | eft child of node at index 1
e Located at index 2i
e Right child of node at index 1

e | ocated atindex 2i + 1

— |19 | 565 (27| 3 (12|23 |32 | 2 4 7 |16 | 22

1 2 3 4 5 6 7 8 9 10 11 12

R @
9000]0

Using Arrays

e Parent of node at index i is located at index 1//2

I
. Mathematical notation: LEJ

— (19| &5 | 27| 3 |12 23 |32 | 2 4 /7 | 16 | 22

1 2 3 4 5 6 / 8 9 10 11 12

Using Arrays

* Right children are at odd indices, left children are even
indices

— (19| 5 | 27| 3 |12 |23 |32 | 2 4 /7 | 16 | 22

1 2 3 4 5 6 / 8 9 10 11 12

Using Arrays

* We can calculate the index if we are given a sequence of
directions

— (19| 65 (27| 3 |12 |23 |32 | 2 4 /7 |16 | 22 | 25

1 2 3 4 5 6 7 8 9 10 11 12 13

Ar ((172+1)2)2+1 =13

Using Arrays
e Definer(n) :=2n+1,1Il(n) :=2n
e Thennodeis atindex (0,20, _{°...°0,°0;)(1)

where 0; =

[if we go left in step i
r if we go right in step 1

r
— |19 65 |27 | 3 |12 |23 |32 | 2 4 7 |16 | 22 | 25
1 2 3 4 5 6 7 8 9 10 11 12 13
I
r
(0 @@

rr - ((12+1)*2)*2+1 =13

Using Arrays

e Can we do something about the unused first element in
the array?

 We just need to adjust the index: by adding 1 and
subtracting 1

Using Arrays

e Childrenofnodeiarenow?2-(i+1)—1=2-i+1
and2- G+ DH)+1)—1=2-1+42

19| 5 [27| 3 |12 |23 |32 | 2 4 /| 16 | 22 | 25

0 1 2 3 4 5 6 / 8 9 10 11 12

Using Arrays

e Parent of a node located at index 1 is located

'+ 1
o atindex[l 5 | =1

19| 5 (27| 3 |12 |23 | 32 | 2 4 /7 | 16 | 22 | 25

2 3 4 5 6 7 8 9 10 11 12

Using Arrays

* One advantage:

 We automatically have a way to find the parent

Priority Queue

 ADS with
* |nsertion
* Popping maximum element

e Example: insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2, pop,
POP

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 10

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 7

 Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: S

* Returns on insert 5, insert 4, insert 10, pop, insert 7, insert 3, pop, insert 2,
pop, pop: 4

Priority Queues

e Simplistic implementation
e Alist

e Whenever we look for an element, we look for the
maximum of the list

 Run time: Proportional to the length of the list

Priority Queues

* Favorite implementation:
e Heap:
* A complete binary tree
* Tree is maximum balanced

 That is partially ordered

Priority Queues

* Heaps as binary tree
e Complete:
* NO nodes missing

e |Last generation filled
from left

e Partially ordered:

e parent has larger
value than child

Priority Queues

e Operations: Insertion

e |nsert at the next
Spot

e |fthe new node is @
larger than the

parent: (11} (o)
e swap with

parent (7) (o) (5) (2)
ORORONONON -

Priority Queues

v

ORONORORONO

e This is repeated

* |f necessary

Priority Queues

e Notice:

 The only violation of
order can be with @

parent
0,
() (e OO
ORORORORONO

Priority Queues

e There are at most
log,(n) swaps

e Compared ton

Priority Queues

e Remove Maximum:
e Maximum is at the top, remove it

* Move last element into the top position

Priority Queues

* Then restore the heap property

* Move up the larger sibling

Priority Queues

e Until there is no violation

Priority Queues

* |mplementation:
* Need to implement two "heapify" operations
e Going up for insert

e Going down for extract maximum

Priority Queues

e Define a class PQ with class methods for index

calculation

class POQ:

def

def

def

def

init (self):
[]

self.array =
up (1ndex) :
return (index+1)//2-1
left (1ndex) :

return 2*index + 1
right (1ndex) :

return 2*1ndex + 2

Priority Queues

* |nsert at the end of the array

e but note the index

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array|[parent] =
self.array|[parent], self.array[n]

n = parent

else:
return

Priority Queues

e Adjust by swapping with parent

e |Index of current element is n

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return

Priority Queues

e (Calculate the parent node

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up(n)

1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return

Priority Queues

* And swap if necessary

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)

if self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array[parent], self.array[n]
n = parent
else:
return

Priority Queues

e Then reset the index

def 1nsert(self, wvalue):
n = len(self.array)
self.array.append (value)
while n>0:
parent = PQ.up (n)
print (n, parent, 'indices')
1f self.array|[parent] < value:
self.array[n], self.array[parent] =
self.array|[parent], self.array[n]
n = parent
else:
return

Priority Queues

e Extract maximum:
e Maximum is always at position 0
e Swap its value with the last element in the array
 Then heapify:

Priority Queues

 This is also recursive, but proceeds from top to bottom

. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . 4 .
. . . .
. N 4 .
. N . .
. N . .
. N . .
. N 4 .
. .

.
.

. 0y
') A . ' . ' .
. . N N ' . A .
. .
. . . .
. . .
. . .
' . ' .
. . .
. ‘ . N U .
’ N
’ . . ’ . .
’ N . ’ N . .
’ N ! . . N .
' '
.
. . . .
. . . f
. . . .
' . . .
. . g B
. . . .
. . . .
. . . .
IR IR
. .
. ~ ’ .
. N B .
. M . .
. N . .
. ‘ . .
~ " > —'

Priori

: .

' .

‘ .

' .
.

Priority Queues

e Swap last and first node

e Delete from node

def get max(self):
ret val = self.arrayl[0]
last = self.array[—1]
del self.array[-1]
self.array[0] = last
n=0

Priority Queues

* Now recursively recover the heap property
* Make case distinctions according to whether
* both children exist
e only the left child exist

* no children present

Priority Queues

e Both children exist

def get max(self):

while n < len(self.array):

left = PQ.left (n)

right = PQ.right (n)

if right < len(self.array):
1f self.array[n] > self.arrayl[left] and

self.array[n] > self.array[right]:
return ret val

1f self.array([left] < self.arrayl[right]:

m = right
else:
m = left
self.array[n], self.array[m] = self.array[m],

self.array[n]
n = m

Priority Queues

 Heap property is not violated

def get max(self):

while n < len(self.array):

left = PQ.left (n)

right = PQ.right (n)

1f right < len(self.array):
if self.array[n] > self.array[left] and

self.array[n] > self.array[right]:
return ret val

1f self.array([left] < self.arrayl[right]:

m = right
else:
m = left
self.array[n], self.array[m] = self.array[m],

self.array[n]
n = m

Priority Queues

e Select the larger of the two children for swapping

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
if self.array[left] < self.array[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.arravy[n]
n = m

.
:
.

.

.

:

:

’ .~
’ A
' .
' .
‘ .
) .

S .

Priori

ty Queues

Priority Queues

e Swap

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m

Priority Queues

e Swap

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m

Priority Queues

* And do not forget to set yourself up for recursion

def get max(self):

while n < len(self.array):
left = PQ.left (n)
right = PQ.right (n)
1f right < len(self.array):
1f self.array[n] > self.arrayl[left] and
self.array[n] > self.array[right]:
return ret val
1f self.array([left] < self.arrayl[right]:
m = right
else:
m = left
self.array[n], self.array[m] =
self.array[m], self.arravy[n]
n=m

Priority Queues

* Only one child can exist (but then it has to be the left one)

 Heap property might not be violated

elif left < len(self.array):
if self.array[n] > self.array[left]:

return ret_val
m = left

self.array[n], self.array[m]
self.array[m], self.array[n]

n = 1m

Priority Queues

* Only one child can exist (but then it has to be the left one)

e But if it is, we have only one candidate for swapping

elif left < len(self.array):
if self.array[n] > self.array[left]:
return ret val
m = left
self.array[n], self.array[m] =
self.array[m], self.array[n]
n = m

Priority Queues

* Per defensive programming, we pretend that we might
have to go on:

elif left < len(self.array):
1if self.array[n] > self.array[left]:
return ret val
m = left
self.array|[n], self.array[m] =
self.array[m], self.array[n]
n=m

Priority Queues

e Difficult Homework:

e Extract Maximum and insertion of a new element are
sometimes combined

* |n this case, we can save work by:

* Inserting the new element at the beginning of the
array

 work ourselves downwards to restore the heap
property

* |mplement this

Priority Queues

e Other operations:
* peek
e returns the maximum, but does not remove it
* |S_empty

 checks whether the array is empty

Priority Queues

e Costs of operations

e Priority queue with n elements uses log,(n) steps in
order to heapify

e Peek and is_empty run in constant time

Priority Queues

 Python implementation of priority queues
* heapq implements a minimum heap

e Uses a Python list

heapg.heappush(lista, element)

heapg.heappop(lista)

Priority Queues

 This is an efficient implementation

e We can "kludge" a max heap implementation for
integers by observing that the maximum of numbers is
the negative of the negative integers

def smallpush(lista, element):
heapg.heappush(lista, -element)
def smallpop(lista):
return —-heapg.heappop(lista)

Running Medians

* Task:
* We are given a stream of numbers

e At any time, want to be able to determine the median of these
numbers

e Example:
e Wegets, 3,1,10, 2
* Median is now 3
e Wethengeti2, 1,2
* We have seen 1,1,2,2,3,5,10,12

* Median is now 2.5 (mean of 2 and 3)

Running Medians

 Nalve implementation
e Just keep an ordered list around
e Better way:
o Keep two sublists of equal size
e Small and Big

e All elements in Small are smaller than all elements in
Big

e Use heaps in order to easily extract the maximum of
Small and the minimum of Big

Running Medians

 Adding a new number:
e |f the left heap is smaller, then insert there

e |f the left and right heap have equal size, insert in the
right heap

e But need to maintain the invariant:

e All elements in the left heap are smaller (or equal)
than all elements in the right heap

Running Medians

e Example: Inserting 5 into
e Left: 0,1,1,2,2 Right: 3,4,6,7,7,9
e We need to insert into Left, but this violates the invariant
e Extract the minimum from right (3)
 Add the minimum to the left
e Add 5 to right
e Left:0,1,1,2,2,3 Right: 4,5,6,7,7,9

Running Medians

* Insert another 5:
e Left:0,1,1,2,2,3 Right: 4,5,6,7,7,9
* Rule say insert to the Right:
e Since max(left) < 5:
* No problem:

e Left:0,1,1,2,2,3 Right: 4,5,5,6,7,7,9

Running Medians

e |nsert another 5:
e |nsert into Left:

e But min(right) = 4 which is smaller than 5

* Inserting 5 into left violates the invariant
* Need to do something about it:
e Extract minimum from Right
e Insert this minimum into Left
* Insert new element into Right

e Left:0,1,1,2,2,3,4 Right: 5, 5,6, 7,7, 9

Running Medians

e (Calculating medians:
e |f len(Left) < len(Right):
e Median is peek(Right)
 Otherwise:

e Median is (peek(Right)+peek(Left))/2

Tiered Bitvectors

e Given a finite universe indexed by {0,1,...,n — 1}:
e U={x:i€{0,1,..,n—1})
e A bit vector represents subsets of U

0 ified
o 0, g= {1 fidS (Kronecker delta)

e § C U corresponds to the bit-vector

. Big:i€{0,1,....,n—1})

Tiered Bitvectors

e Toinsert Xx; into the set:

e Set bitito 1

e To delete x; from the set:

e Sethitito0

 To lookup whether x; € §:

e Check value of bit 1

Tiered Bitvectors

e Minlndex, Maxlndex, Predecessorindex, Successorlndex
are extremely slow

* O(|U])

Tiered Bitvectors

* If memory is (as is typical) accessed via cache-lines

 Words of length L = 64B
e Break the universe into | U|/L pieces of size L
¢ Uo, Ul’ Uz, coos Un/L

* |ntroduce a master bitvector by

* TR 1 #SNU# 0

Tiered Bitvectors

00101000100

00000000 |00000000|00100011|00000000|00000010|00000000|00000000|00000000]00100000|00000000]100000000

Tiered Bitvectors

* QOrdered dictionary operations run in time
e O(U/L+ L)

e This is minimized when L =4/ U

Tiered Bitvectors

e What are the operations?

Tiered Bitvectors

* |nserting to a set:
e Set master bitvector bit
e Set partial bitvector bit

e Deleting from a set
 Reset partial bitvector bit

o |f partial bitvector is empty: Reset master bitvector bit

Tiered Bitvectors

* |S-empty:
 Check master bitvector only has entries 0
* min:

 One min operation on the master bitvector, one min
operation on partial bitvector

Tiered Bitvectors

 Obviously, we can extend this from two tiers to many
tiers.

e Result is a tree

Fibonacci Heaps

Mergeable Heaps

e Mergeable Heaps are ADS with

e Make-Heap

e |nsert(H, x)

e Minimum(H)

e Extract-Min(H)

o Union(H,, H)
 Fibonacci heaps in addition have

e Decrease-Key(H, x, new_val)

e Delete(H,x)

Mergeable Heaps

Binary Heap Fibonacci Heap
(worst-case) (amortized)

Procedure

Make-Heap

Insert

Minimum

Extract-Min

Union

Decrease-key

Delete

Fibonacci Heaps

* Fibonacci heaps:
e Useful when Extract-Min and Delete are rare

e E.g. graph algorithms where we use decrease-key in
order to update edges

* Minimum spanning trees

e Single-source shortest paths

Fibonacci Heaps

* Fibonacci heap:
e Collection of rooted trees that are min-heap ordered:
 Every child’s key is larger than its parent’s key

e Example:

minimum

Fibonacci Heaps

* Each node has a link to their parent

e All children (including root list) are in a double linked child
list

e Parent has one link to the child list

minimum

23 7 3 17

71~ 1
>

Fibonacci Heaps

e Double linked list:

e Allows constant time inserts and fusion

Fibonacci Heaps

e Each node has attributes
* Number of children in degree

e Node x has mark x.mark to indicate whether node x
has lost a child since the last time x was made a child
of another node

* Newly created nodes are unmarked

e Node x becomes unmarked whenever it iIs made
child of another node

e Used for DecreaseKey operation

Fibonacci Heaps

 Access to a Fibonacci node through pointer to minimum
key node

 Each Fibonacci node stores
e Links to left and right sibling
e Link to parent unless root

e Link into the child list

Fibonacci Heaps

e Use potential method
e {(H) : number of trees in the root list
e m(H): number of marked nodes

e Potential ®(H) = t(H) + 2m(H)

* Unit of potential can pay for all constant time
operations

Fibonacci Heap Operations

 Creating a new Fibonacci Heap
e Hn=20
e H.min = Null
e« O(H) =0

e amortized cost is O(1)

Fibonacci Heaps

e |nsert(H,x)
 Create an otherwise empty tree with x as root
e If there is no element in the heap (H.min = Null):

 Create a root list for H containing x only

e (Otherwise
e |nsert the new tree into the root list

e Check whether H.min needs to be updated

e Amortized costs: O(1) + 1 = O(1)

Fibonacci Heaps

Fibonacci Heaps

e Minimum
e Just returns a pointer to the minimum node

e Amortized costs is O(1)

Fibonacci Heaps

e Uniting two heaps
e Concatenate the root lists

e Change in potential is zero

e Amortized costs is O(1)

Fibonacci Heaps

e Extracting the minimum

e This iIs where we consolidate

z=H.min
1f z # NULL:
for each child x of z:
add x to the root list of H
X.p = NULL
remove z from root list
if z == z.right: #z only node
H.min = NULL
else:
H.min = z.right
CONSOLIDATE (H)
H.n —= 1
return z

Fibonacci Heaps

@-O-@- Z ----- @g

Moving children of H.min into the root list

Fibonacci Heaps

@-O-@- Z ----- @g
@-O-@- Z ----- @:i:’\

nnnnnnnnnnnnnnnnnn

Fibonacci Heaps

e Consolidation:
 Repeat:

e Find two nodes in the root list with trees of the same
height

e Starting at the current link H.min
e Unify the two trees making the smaller one the root

e (Clears mark on the looser

Fibonacci Heaps

e Consolidation:
* To find nodes in the root list that can be merged

e Create an array A[O ... D(H.n)] of nodes in the root
tree

e D(H.n) is the maximum degree of a tree rooted in a
node in the root list

 Fill into A

Fibonacci Heaps

oNoRoS Z ----- @:i§
oNoRoS Z ----- @:: ----- §

: NULL
: NULL
: NULL
: NULL

> > > >
LN =S

: NULL
17

: NULL
]: NULL

> > > >
LN 2O

Fibonacci Heaps

oNoRoS Z ----- @

- NULL
17
: 24
]: NULL

> > > >
LN =S

Fibonacci Heaps

® OO Z ----- @

l: 23
1:17
l: 24
: NULL

> > > >
LN 2O

Fibonacci Heaps

H.min

1 23,7
17

: 24

: NULL

> > > >
LN = O

We cannot insert 7 into A[0], so we combine

Fibonacci Heaps

H.min

> > > >
LN =S

We remove 7 from the array. We then merge.

After merging, we try to insert 7 into A[1]. Since
there is already an occupant there, we find another
merge candidate

: NULL
17,7
: 24

: NULL

Fibonacci Heaps

H.min

: NULL
: NULL
24,7

: NULL

> > > >
LN 2O

Inserting the new tree into A gives us
another merge candidate

Fibonacci Heaps

J: NULL
J: NULL
2]: NULL

> > > >
W N = O

Fibonacci Heaps

21
: NULL
: NULL

> > > >
LN =S

We insert 21 into the array.

Fibonacci Heaps

0]: 21
[1]: 18
2]: NULL

> > > >
WN = O

And then insert 18.

Fibonacci Heaps

0]: 21, 52
[1]: 18
2]: NULL

> > > >
WN = O

Inserting 52 gives us another merge candidate

Fibonacci Heaps

: NULL
: 18, 21
: NULL

> > > >
LN = O

Which leads to another merger

Fibonacci Heaps

]: NULL
- NULL
1: 18

> > > >
LN 2O

We move on to the next node

Fibonacci Heaps

1: NULL
1: 38
1: 18

> > > >
LN 2O

We insert it into the array.

Fibonacci Heaps

H.min

]: NULL
]1: 38
:18
7,7

> > > >
LN 2O

We then move on to the next node. When we
iInsert, we see that this one is already in A and
that we are done merging.

Fibonacci Heaps

1: NULL
1: 38
1: 18

> > > >
LN 2O

We now find the new minimum.

Fibonacci Heaps

e Combining two nodes

* X.key < y.key

def fib heap link(H, y, x):
Assert x.key < vy.key
remove y from root list of H
y.mark = False

Fibonacci Heaps

e Consolidate:

def consolidate (H) :
A = [None for 1 in range(D(H.n))]
for w 1n H.root list:
while (A[w.degree]) :
degree = A[w.degree]
y = A[degree] # candidate for merger
1f w.key > y.key:
Wy ¥V T Yr W
fib heap link (H,y,w)
A[degree] = Null
degree += 1
Alw.degree] = w
reset H.min

Fibonacci Heaps

* Costs:
* Potential:
e Potential before is t(H)+2m(H)
» Potential after is D(n)+1+2m(H)
e because A has D(n) entries
* pbecause nobody gets marked
* Work done:
* t(H) for going through the root list
* < D(n) for inserting the children of minimum

e Amortized costs:

.« < ODM) + 1(H)) + (D) + 1+ 2m(H) — t(H) — 2m(H)) = O(D(n))

Fibonacci Heaps

* Decrease akey
 Find parent p
o if p and x.key < p.key:
e CUT(H,x,y)
e CASCADING-CUT(H,y)

* |f necessary, adjust H.min

Fibonacci Heaps

e Cut(H, x,y)

def cut (H, x, V):
remove x from child list of y

yv.degree —-= 1
add x to root list of H
X.p = Null

x.mark = False

Fibonacci Heaps

e Cascading Cut

def cascading cut (H,y):
z = y.p # parent of vy

1f z:
1f y.mark == False:
yv.mark = True
else:

cut (H, y, 2z)
cascading cut (H, z)

Fibonacci Heaps

Fibonacci Heaps

Fibonacci Heaps

Remove node (and any descendants)

Fibonacci Heaps

Fibonacci Heaps

Second operation

Change key from 3510 5

Fibonacci Heaps

Second operation

H.min

Change key from 3510 5

Fibonacci Heaps

Fibonacci Heaps

Mark parent.
But parent is already marked, so:
Cascading Cut!

Fibonacci Heaps

26 IS removed.
Look at 24: It is also marked

Fibonacci Heaps

Cut 24, unmarking it.
Cut stops here, parent is unmarked.

Fibonacci Heaps

Fibonacci Heaps

Change in potential:
e (Cut creates a new tree and potentially clears a mark

e Each Cascading-Cut cuts a marked node and clears
the mark bit (with exception of the last one)

H now has c-1 trees produced by cascading cuts and the
tree at x: t(H)+c trees

At most m(H)-c+2 marked nodes

<HH)+c+2mH) —c+2) — t(H) = 2m(H) = 4 — ¢

Fibonacci Heaps

* Amortized cost of decrease key:

e O(c)+4—-c=0(])

Fibonacci Heaps

 Deleting a node

® def delete (H, x):
decrease key(H,x,-1infty)
extract min (H)

Fibonacci Heaps

e |eft to investigate:

e Upper bound D(n) on the degrees is O(log(n))

Lemma: F., =1+ ZF

Fibonacci Heaps
1+4/5

2

o Lemma: F}_ , > q§k with ¢p =

Fibonacci Heaps

e Lemma: Let x be any node in a Fibonacci heap with
X.degree = k. Lety;,y,, ...,y be the children of x in the
order in which they were linked to x (by consolidate).

Then:
y;.degree > 0, y..degree >i—2foralli=23,...,k

Fibonacci Heaps

* Proof:
e Clearly, y, .degree > 0
e Assume a general i > 2.

« When CONSOLIDATE links y;, to x, then all of y,, y,, ...
V;_1 was linked to x

 This means x . degree > 1

e Because y, is linked to x only if x . degree =y, . degree

e y..degree > 1 — 1

Fibonacci Heaps

e But in the mean-time, the degree of y; might have
decreased

e But Cascading-Cut would cut y; from X if y; has
lost more than two children

e Therefore y;.degree > i — 2

Fibonacci Heaps

e Lemma: Let x be any node in a Fibonacci heap and let
k = x .degree. Then size(x) > F} ., > d*,

o Let s, denote the minimum possible size of any node of
degree k in a Fibonacci heap.
e so=1, 5 =2

 Adding children does not decrease the node’s size, the
value of s, increases monotonically with k.

Fibonacci Heaps

Notice s, < size(x), so giving a lower bound on s, is
sufficient

Take a node z with
e 7.degree =k size(z) = §;,

Let y{, V5, ..., ¥, denote the children of 7 in the order in
which they were linked to 7

To bound s,;, we have one for z and one for y, and the
rest

Fibonacci Heaps

* This gives

o size(x) > s,

k
., 22+ Z 3y.degree
i=2

k
> 2+ Z S;_, because y;.degree > [— 2 by Lemma
=2
and monotonicity of s,

Fibonacci Heaps

e We prove by induction that s; > £/,

* |nduction step:

Fibonacci Heaps

Let x be the node with maximum degree into an n-node
Fibonacci Heap

Degree of x is k
By lemma, n > size(x) > ®*
Thus: logg(n) > k

Thus: maximum degree is O(log n)

van Emde Boas Trees

e QOperations of priority queues have at least one
logarithmic operation

e If everything would be less, then we could sort in time
n-logn

 But we can sort an array of integersinrange 1 ... nin
time O(n)

van Emde Boas Trees

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

Binary tree on top of a bitvector

van Emde Boas Trees

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

Finding the Nextindex / Previouslndex
IS logarithmic

* Finding the minimum value in logarithmic time:

van Emde Boas Trees

e Start at root

* Head down taking the leftmost one

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

1

1

van Emde Boas Trees

 We can combine nodes into a tree with higher fan-out

1

1127

van Emde Boas Trees

e Assume that the number 11 of elements in the universe is

k
u = 2%

e To build a recursive structure:

e Recurrence T(u) = T(v/u) + O(1)
o Setting m = log,(u), S(m) = T(2™)
e Recurrence is S(m) = S(m/2) + O(1)
o MT = S§(m) = O(log,(m))
o T(u) = T(2") = S(m) = O(log,(m)) = O(log,(log,(u)))

van Emde Boas Trees

 Proto-vEM-structures for u
e y = 2: array of two bits
e u =22 with k > 1:
e summary pointer towards parent

e cluster towards children

4)

T

Vu proto-vUB(Vu) structures

summary

R

proto-vUB(Vu) structure

van Emde Boas Trees

oo)

olQ) k“

olo) \“

oo) k“

olo)

van Emde Boas Trees

e QOperations on proto-vEB-Trees

e Foragivenx € U.:

X
. high(x) = |—=] number of cluster

u
e low(x) =x (mod \/Z) position of x in cluster

e index(x,y) = x\/ﬁ + y rebuilds index from number
of cluster and position in cluster

van Emde Boas Trees

e QOperations on proto-vEB-Trees

e Membership

def pvEB member (V, x) :
1f V.u == 2:
return V.A[X]
else:
return pvEB member (V.cluster[high(x)].low (x)

e Runtime has recurrence T(u) = T(\/Z) + O(1)

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

e QOperations on proto-vEB-Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

van Emde Boas Trees

