
Information Processing Letters 110 (2010) 944–949

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A new analysis of the false positive rate of a Bloom filter ✩

Ken Christensen a,∗, Allen Roginsky b, Miguel Jimeno a,1

a Department of Computer Science and Engineering, University of South Florida, 4202 East Fowler Avenue, ENB 118, Tampa, FL 33620, USA
b Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 December 2009
Received in revised form 9 July 2010
Accepted 23 July 2010
Available online 3 August 2010
Communicated by S.E. Hambrusch

Keywords:
Data structures
Analysis of algorithms
Bloom filters

A Bloom filter is a space-efficient data structure used for probabilistic set membership
testing. When testing an object for set membership, a Bloom filter may give a false positive.
The analysis of the false positive rate is a key to understanding the Bloom filter and
applications that use it. We show experimentally that the classic analysis for false positive
rate is wrong. We formally derive a correct formula using a balls-and-bins model and show
how to numerically compute the new, correct formula in a stable manner. We also prove
that the new formula always results in a predicted greater false positive rate than the
classic formula. This correct formula is numerically compared to the classic formula for
relative error – for a small Bloom filter the prediction of false positive rate will be in error
when the classic formula is used.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A Bloom filter is a space-efficient data structure used
for probabilistic set membership testing. The Bloom fil-
ter was invented by Bloom in 1970 [1] and has found
widespread application in many domains of Computer Sci-
ence. Bloom filters have many uses in databases, network
applications (a major survey is in [3]), and even by Google
in the core of their search engine [4]. A Bloom filter can
be implemented in hardware or software.

A Bloom filter is an array of m bits indexed from 1 to
m that is initially clear (all bits set to 0). An object (for ex-
ample, a string) is added, or mapped-in, to a Bloom filter
by inputting it to a group of k independent hash func-
tions. Each hash function hashes the object into an integer
value between 1 and m, this value is then used as an in-
dex position in the Bloom filter array. The resulting k array
index positions in the Bloom filter array are set to 1. An

✩ This material is based on work supported by the National Science
Foundation under CNS-0520081.

* Corresponding author. Tel.: +813 974 4761; fax: +813 974 5456.
E-mail addresses: christen@csee.usf.edu (K. Christensen),

allen.roginsky@nist.gov (A. Roginsky), mjimeno@csee.usf.edu (M. Jimeno).
1 Miguel Jimeno is on leave from Universidad del Norte, Barranquila,

Colombia.

object is tested for set membership by inputting it to the
same group of k hash functions. If all k generated array
positions are set to 1, then the object is probably a mem-
ber. Non-member objects may coincidentally map to set
bit positions in the Bloom filter array, thus false positives
are possible. False negatives are not possible. The prob-
ability of a false positive – or false positive rate – of a
Bloom filter is a function of the randomness of the val-
ues generated by the hash functions and of m, n, and k
(n is the number of objects mapped into the Bloom filter).
Given the widespread application of Bloom filters, a thor-
ough and correct understanding of the false positive rate is
needed.

In the analysis of Bloom filter false positive rate it
is typically assumed that the hash functions are perfect
whereby they produce an independent and random index
value for each object and thus the false positive rate is
only a function of m, n, and k. We note that the hash
functions do not have to be different. The “classic” anal-
ysis of Bloom filter false positive rate is as follows. This
analysis is often attributed to Bloom [1], but his original
analysis was different. This classic analysis probably first
appeared in Mullin [7]. The probability that an arbitrary
bit is not set after k bit insertions from the mapping of
one object is (1 − 1/m)k . For n objects mapped-in, the
probability that an arbitrary bit is not set is (1 − 1/m)kn

0020-0190/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2010.07.024

http://dx.doi.org/10.1016/j.ipl.2010.07.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:christen@csee.usf.edu
mailto:allen.roginsky@nist.gov
mailto:mjimeno@csee.usf.edu
http://dx.doi.org/10.1016/j.ipl.2010.07.024


K. Christensen et al. / Information Processing Letters 110 (2010) 944–949 945

and therefore the probability that an arbitrary bit is set
is pset = 1 − (1 − 1/m)kn . Thus, for k hashes for a test ob-
ject not mapped in the Bloom filter, the probability of false
positive is (we call this the “classic formula”)

pfalse = pk
set =

(
1 −

(
1 − 1

m

)kn)k

. (1)

The value of k is usually chosen to minimize pfalse and is
a function of m/n. The false positive rate from Eq. (1) can
be approximated as pfalse = (1 − e−kn/m)k from which the
value of k that minimizes pfalse is found to be one of the
two integer values closest to (m/n) ln(2) [5].

The classic formula of Eq. (1) is wrong. This can be
made clear if we look at the probability of false positives.
For a Bloom filter with s bits set, pset = s/m and

pfalse =
(

s
m

)k

. (2)

Bose et al. [2] is the first published account of the clas-
sic formula being “not quite correct”. In Bose et al. a new
formula is given by means of conditioning on s and then
summing over all possible numbers of set bits. In this pa-
per, we model and derive in detail the false positive rate
of a Bloom filter and explore stable methods to compute
the false positive probability value for various m, n, and k
values thus expanding on the work by Bose et al. The key
contributions of this paper are:

1. The detailed derivation of a correct formula for the
mean false positive rate of a Bloom filter with a nu-
merically stable method for solving it. Our derivation
is different than that of Bose et al.

2. A presentation of a straight-forward and simple proof
that the actual false positive rate is always greater
than that predicted by the classic formula.

3. Numerical results showing the relative error of the
classic versus new expression for false positive rate.

In addition, we show that the analysis and classic formula
credited to Bloom is different from the one derived by
Bloom in his paper [1]. Second, we note that Bose et al. [2]
showed that the classic well-known formula for the proba-
bility of false positives is incorrect. We note that both this
classic formula and Bloom’s original result are incorrect,
and we further correct and expand the analysis of Bose
et al.

2. False positive rate of a Bloom filter

The false positive rate of a Bloom filter can be consid-
ered from an experimental point of view. First, consider
an experiment that generates numTrials Bloom filters (for
n · numTrials unique objects) and determines the mean
number of bits set in the numTrials generated Bloom fil-
ters. The probability of false positive is then calculated
using Eq. (2). The false positive rate from this experiment
matches that of Eq. (1) for a given m, n, and k – that
is, it matches the classic formula. Now, consider a simi-
lar experiment where the false positive rate of each Bloom

filter instance is individually computed using Eq. (2). For
the first experiment, the false positive rate is computed as

pFalse =
(

s1 + · · · + snumTrials

m · numTrials

)k

, (3)

where si is the number of bits set in the Bloom filter in
iteration i (i = 1,2, . . . ,numTrials). For the second experi-
ment the mean false positive rate is computed as

pFalse =
( s1

m

)k + · · · +
( snumTrials

m

)k

numTrials
. (4)

In practice, it is the mean value from the second experi-
ment that will be seen in real applications of Bloom filters
since it represents the mean false positive rate of mul-
tiple instances of a Bloom filter. The true probability of
false positive is always at least as large as the old incor-
rect probability, this follows from

sk
1 + · · · + sk

N

N
!

(
s1 + · · · + sN

N

)k

(5)

which follows a well-known Holder’s inequality [6] (for
any integer N ! 1, any k, such that 1 " k < ∞, and any
non-negative s1, . . . , sN ). The proof of this is as follows:

Lemma. For any integer N ! 1, any k, such that 1 " k < ∞,
and any non-negative s1, . . . , sN , the following holds:

sk
1 + · · · + sk

N

N
!

(
s1 + · · · + sN

N

)k

. (6)

The proof is based on Holder’s inequality [6]. Note that k
does not have to be an integer.

Proof. For k = 1 this is trivial. Assume now that k > 1, we
will select q = k/(k − 1), so that 1/k + 1/q = 1 and choose
y1 = y2 = · · · = yN = 1/N . Then applying Holder’s inequal-
ity with k and q as chosen to the sequences si and yi we
obtain

s1

N
+ · · · + sN

N
"

(
N∑

i=1

sk
i

)1/k[
N

(
1
N

)q]1/q

=
(

N∑

i=1

sk
i

)1/k

N
1
q −1

=
(

N∑

i=1

sk
i

)1/k

N− 1
k

=
(∑N

i=1 sk
i

)1/k

N1/k

=
(

sk
1 + · · · + sk

N

N

)1/k

. (7)

Taking both sides to the power of k, we complete the
proof. ✷

Thus, the classic formula of Eq. (1) predicts too small
of a value for the false positive rate of a Bloom filter. In



946 K. Christensen et al. / Information Processing Letters 110 (2010) 944–949

a real application this is an error as it can lead to using
a too small Bloom filter in the terms of m for a given
(targeted) false positive rate. In addition, the error in the
predicted false positive rate can also result in using an in-
correct value of k.

We now derive an expression for the probability of false
positive of a Bloom filter that corresponds to the mean
false positive rate from multiple instances of a Bloom filter
(this matches the results of the second experiment de-
scribed above). We will use a balls-and-bins construct as
a model for a Bloom filter. Let there be N balls and M
bins. The M bins represent the m bits of a Bloom filter.
The N balls represent the k · n hash values mapped into a
Bloom filter. When the N balls are randomly thrown into
the M bins we are interested in solving for the probabil-
ity P(N, M, K ) of exactly K bins (K = 1,2, . . . , M) having
one or more balls in it. This mimics the number of bits
set in a Bloom filter. The N balls being in exactly K bins
can happen either when the first N − 1 balls were in ex-
actly K bins and the Nth ball fell into one of these K bins,
or when the first N − 1 balls were in exactly K − 1 bins
and the Nth ball fell into one of the other M − K + 1 bins.
Hence,

P(N, M, K ) = P(N − 1, M, K )
K
M

+ P(N − 1, M, K − 1)
M − K + 1

M
. (8)

Eq. (8) is a recursive expression for the probability of K
bins being occupied. In these computations, P(1, M,1) is
equal to 1 and P(N, M, K ) is automatically set to 0 when
K > N .

Theorem. Let P(N, M, K ) be the probability of having exactly
K bins non-empty when N balls are thrown independently at
random in M bins. This probability can be expressed as

P(N, M, K ) =
(

1
MN−1 · (M − 1)!

(M − K )!

)

×
K∑

j=1

(
(−1)K− j · jN

j!(K − j)!

)
, (9)

which can be rewritten as

P(N, M, K ) =
K∑

j=1

(−1)K− j
(

j
M

)N (
M

K

)(
K

j

)
. (10)

Proof. We prove Eq. (10) by induction where (I) is the
base case and (II) is the induction step.

(I) N = 1. We need to prove the result for all values of
M and K (M ! K ). Note that P(1, M,1) is 1, so the result
is trivially true for K = 1. If K > 1, then P(1, M, K ) is 0.
Let us demonstrate that the right-hand side of (10) also
evaluates to 0. We have

K∑

j=1

(−1)K− j
(

j
M

)(
M

K

)(
K

j

)

=
(

M

K

)
1
M

K∑

j=1

(−1)K− j K !
j!(K − j)! j

=
(

M

K

)
K
M

K∑

j=1

(−1)(K−1)−( j−1) (K − 1)!
( j − 1)!(K − j)!

(here we set n = K − 1)

=
(

M

K

)
K
M

n∑

l=0

(−1)n−l
(

n

l

)

=
(

M

K

)
K
M

(1 − 1)n = 0 (11)

since n ! 1. The simplification from Eq. (10) to Eq. (11)
makes use of the Binomial Theorem.

(II) Let us now assume that Eq. (10) holds for N −1 and all
M and K such that M ! K and prove it for N . We will uti-
lize the recursive formula for P(N, M, K ) given in Eq. (8).
We will compute

P(N − 1, M, K )
K
M

+ P(N − 1, M, K − 1)
M − K + 1

M

=
K∑

j=1

(−1)K− j
(

j
M

)N−1 (
M

K

)(
K

j

)
K
M

+
K−1∑

j=1

(−1)K−1− j
(

j
M

)N−1 (
M

K − 1

)

×
(

K − 1

j

)
M − K + 1

M

=
(

K
M

)N (
M

K

)
+

K−1∑

j=1

(−1)K− j

×
(

j
M

)N−1 (
M

K

)(
K

j

)
K
M

+
K−1∑

j=1

(−1)K−1− j
(

j
M

)N−1 (
M

K − 1

)

×
(

K − 1

j

)
M − K + 1

M
. (12)

In the above we have separated the term with j = K in the
first sum. Continuing the above and substituting
(

K − 1

j

)
+

(
K − 1

j − 1

)
=

(
K

j

)

thus breaking the first sum into two parts, we have

=
(

K
M

)N (
M

K

)

+
K−1∑

j=1

(−1)K− j
(

j
M

)N−1 (
M

K

)(
K − 1

j

)
K
M

+
K−1∑

j=1

(−1)K− j
(

j
M

)N−1 (
M

K

)(
K − 1

j − 1

)
K
M



K. Christensen et al. / Information Processing Letters 110 (2010) 944–949 947

+
K−1∑

j=1

(−1)K−1− j
(

j
M

)N−1 (
M

K − 1

)

×
(

K − 1

j

)
M − K + 1

M
= A + B + C + D (13)

where A, B , C , and D are intermediate terms considered
below. Now,

C =
K−1∑

j=1

(−1)K− j
(

j
M

)N−1 (
M

K

)(
K − 1

j − 1

)
K
M

=
K−1∑

j=1

(−1)K− j
(

j
M

)N (
M

K

)
(K − 1)!

( j − 1)!(K − j)!
M
j

K
M

=
K−1∑

j=1

(−1)K− j
(

j
M

)N (
M

K

)(
K

j

)
. (14)

So

A + C =
(

K
M

)N (
M

K

)

+
K−1∑

j=1

(−1)K− j
(

j
M

)N (
M

K

)(
K

j

)

=
K∑

j=1

(−1)K− j
(

j
M

)N (
M

K

)(
K

j

)

which is our expected formula for P(N, M, K ). So, to prove
that A + B + C + D is equal to P(N, M, K ), we only need
to show that B + D = 0. We have

B =
K−1∑

j=1

(−1)K− j jN−1

MN−1

M!
K !(M − K )!

(K − 1)!
j!(K − 1 − j)!

K
M

=
K−1∑

j=1

(−1)K− j jN−1

MN

M!
(M − K )! j!(K − 1 − j)! . (15)

And,

D =
K−1∑

j=1

(−1)K−1− j jN−1

MN−1

M!
(K − 1)!(M − K + 1)!

× (K − 1)!
j!(K − 1 − j)!

M − K + 1
M

=
K−1∑

j=1

(−1)K−1− j jN−1

MN

M!
(M − K )! j!(K − 1 − j)! . (16)

Eqs. (15) and (16) show that B and D are the sums of the
same summands, but each summand is entering the sum
with an opposite sign, that is, where it is (−1)K− j for B ,
it is (−1)K−1− j for D . Hence, B + D = 0, which completes
the induction proof of the correctness of Eq. (10). ✷

Having P(N, M, K ) we can now write the probability of
false positive for a Bloom filter as the total probability

P(N, M, K )
1. clear table1
2. clear table2
3. table1[1] ← 1
4. for i ← 1 to K do
5. for j ← i to N do
6. if ( j > 1)
7. table1[ j] ← table1[ j − 1] · (i/M) + table2[ j − 1]

· ((M − i + 1)/M)

8. p ← table1[N]
9. copy table1 to table2

10. clear table1
11. return(p)

Fig. 1. Algorithm for table-based computation of P(N, M, K ).

pfalse =
m∑

i=1

(
P(k · n,m, i)

(
i

m

)k)
(17)

where (i/m)k is the false positive rate for the Bloom filter
with i bits set from Eq. (2) and P(k · n,m, i) is the proba-
bility of this occurrence. Combining Eq. (10) and Eq. (17)
we get

pfalse = m!
mk(n+1)

m∑

i=1

i∑

j=1

(−1)i− j jknik

(m − i)! j!(i − j)! . (18)

The direct relationship of Eq. (18) with the result in Bose
et al. [2] is described later in this paper.

3. Numerically computing the false positive rate

Directly computing pfalse using Eq. (18) is very diffi-
cult and is generally unstable for large m,n, and k. The
factorial and exponent terms within the summations be-
come very large and overflow for even modest values of
m. However, a direct computation of the recursive expres-
sion in Eq. (8) and then using Eq. (17) to compute pfalse
is stable. In Eq. (17) both terms within the sum are al-
ways non-negative, and thus the calculation of the sum-
mation is stable in that it will not overflow. Eq. (8) can be
computed recursively with P(1, M,1) = 1,P(a, M,b) = 0 if
a < b, and P(a, M,0) = 0. The recursive algorithm can be
“unraveled” into an iterative table-based algorithm. Such
a table-based method may be faster to execute when im-
plemented in a stack-oriented machine. Fig. 1 shows an
iterative table-based algorithm where the recursive loop
is “unraveled” into two tables (table1 and table2, both of
size N and indexed as table1[1], table1[2], . . ., table1[N]).
If the algorithm for P(N, M, K ) in Fig. 1 is called itera-
tively (that is, with K = 1,2, . . . , M) as is the case when
implementing Eq. (17), then the tables do not need to be
recomputed for each iteration and can be stored perma-
nently between iterations once initially created for K = 1.
That is, the computation of pfalse uses a sequence of M ele-
ments, that should be computed as a whole, allowing each
of them to be calculated efficiently in O (N).

Fig. 2 shows the relative error between the classic and
new formulas as a function of m for four m/n values where
the optimal k is used for the given m and n. As m increases
and as m/n decreases, the relative error decreases. Note
that for small values of m (such as m = 32 and m = 64)
the relative error can be significant. This implies that the
performance (relative to false positive rate) of applications



948 K. Christensen et al. / Information Processing Letters 110 (2010) 944–949

Fig. 2. Relative error of classic versus new formula.

that use small Bloom filters would not be correctly pre-
dicted using the classic formula.

4. Related work

The Bloom filter was first proposed as a “Method 2”
for hash coding with allowable errors by Bloom in 1970
[1]. The original analysis by Bloom represented the ex-
pected proportion of bits set to 0 after n objects have
been mapped-in as (1 − k/m)n , which is not the same as
(1−1/m)kn in the classic analysis that is usually attributed
to Bloom. Bloom’s expression for probability of false posi-
tive was then

pfalse =
(

1 −
(

1 − k
m

)n)k

. (19)

For m ≫ k this expression is numerically close to that of
Eq. (1). However, for a smaller m Bloom’s original expres-
sion is in error. The analysis usually attributed to Bloom
may have first appeared in a short paper by Mullin in
1983 where Eq. (1) was developed [7]. Thus, the attribu-
tion of the classic analysis to Bloom (an attribution made
in countless papers) is incorrect; the concept of the Bloom
filter is, however, correctly attributed to Bloom.

A very recent work by Bose et al. [2] shows the classic
derivation to also be incorrect. Bose et al. argue that the
assumption that the probability of an arbitrary bit being
set in a Bloom filter is independent is incorrect. Bose et
al. use an example of a 2-bit Bloom filter to demonstrate
that the false positive rate predicted by Eq. (1) is an under-
estimate. Bose et al. develop an expression for pfalse based
on a balls-and-bins model using two colors of balls. The
expression derived is

pfalse = 1
mk(n+1)

m∑

i=1

iki!
(

m

i

){
k · n

i

}
(20)

where

{
k · n

i

}
= 1

i!
i∑

j=0

(−1)i− j
(

i

j

)
jk·n (21)

is the Stirling number of the second kind (in Bose et al.
[2] this expression is in error; it contains (−1) j and not

(−1)i− j). The difference is significant as it will lead to an
erroneous result. Our expression for pfalse in Eq. (18) re-
duces to exactly Eq. (20). In contrast to Bose et al., our
work develops an experimental basis for understanding the
false positive rate and derives a computationally solvable
formula (even for large m,n, and k) based on a recursive
expression. Bose et al. does not present any means of com-
puting Eq. (20). Bose et al. does, however, derive not only
a lower bound but also an upper bound for pfalse that ap-
plies only to large m, n, and k that satisfy some additional
constraints.

Most applications use large Bloom filter of many mega-
bytes in length. However, there are applications that use
small Bloom filters of few bytes in length. Predicting
the performance of these applications using the clas-
sic formula will often result in errors. Mullin has in-
vestigated the use of small Bloom filters to speed-up
string search [8]. Mullin employed a first algorithm to
build an index of Bloom filters of one per document
and a second algorithm to use the resulting Bloom fil-
ter index for searching. A specific example was devel-
oped and demonstrated. The expected (predicted) perfor-
mance of the new algorithm was not studied by Mullin.
Whitaker and Wetherall used small Bloom filters embed-
ded in packets to detect and halt forwarding loops in
networks [9]. In their scheme – named Icarus – an ex-
tra field is added to a packet header that consists of a
small Bloom filter which registers the network interfaces
the packet has been through by setting pre-determined
random bits in the Bloom filter header. An analysis of ex-
pected hop count before a false positive was given as a
function of Bloom filter size. The analysis was based on
the classic formula for false positive rate. Given the use of
small Bloom filters in Icarus, this analysis is likely incor-
rect.

5. Summary

As Bloom filters – both large and small in size – be-
come more widely used in a broad range of applications a
complete and correct understanding of their false positive
rate is needed. In this paper, we have shown that the false
positive rate can be viewed experimentally in two ways –
as a function of the average of the number of bits set in a
Bloom filter over many instances and as an average of the
individual false positive rate of each Bloom filter of many
instances. The classic analysis of the Bloom filter results
in the “classic formula” – Eq. (1) – that correctly predicts
the false positive rate of the first case, but not that of the
second case. It is the second case that represents actual ap-
plication performance (that is, of an application that uses
Bloom filters) over many trials. We derive a computable
recursive formula – Eq. (8) – for the second case. A closed
form of this formula is Eq. (18). We also clearly show that
the classic formula always predicts a too low false positive
rate compared to the correct new formula in Eq. (18). For a
small Bloom filter (for example, of size 32 bits) the predic-
tion of false positive rate will be in error. For larger Bloom
filters the relative error decreases.



K. Christensen et al. / Information Processing Letters 110 (2010) 944–949 949

Acknowledgements

The authors thank the anonymous reviewer for his or
her very helpful and insightful comments that have greatly
improved this paper.

References

[1] B. Bloom, Space/time tradeoffs in hash coding with allowable errors,
Communications of the ACM 13 (7) (1970) 422–426.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M.
Smid, Y. Tang, On the false-positive rate of Bloom filters, Information
Processing Letters 108 (4) (2008) 210–213.

[3] A. Broder, M. Mitzenmacher, Network applications of Bloom filters: a
survey, Internet Mathematics 1 (4) (2004) 485–509.

[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows,
T. Chandra, A. Fikes, R. Gruber, Bigtable: a distributed storage sys-

tem for structured data, in: Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementation, Seattle,
WA, 6–8 November, USENIX Association, Berkley, CA, 2006, pp. 205–
218.

[5] L. Fan, P. Cao, J. Almeida, A. Broder, Summary cache: a scalable wide-
area web cache sharing protocol, IEEE/ACM Transactions on Network-
ing 8 (3) (2000) 281–293.

[6] G. Hardy, J. Littlewood, G. Pólya, Inequalities, Univ. Press, Cambridge,
1934.

[7] J. Mullin, A second look at Bloom filters, Communications of the
ACM 26 (8) (1983) 570–571.

[8] J. Mullin, Accessing textual documents using compressed indexes of
arrays of small Bloom filters, The Computer Journal 30 (4) (1987) 343–
348.

[9] A. Whitaker, D. Wetherall, Forwarding without loops in Icarus, in:
Proceedings of the 5th IEEE Conference on Open Architectures and
Network Programming, New York City, 28–29 June, IEEE Computer So-
ciety, Los Alamitos, CA, 2002, pp. 63–75.


