
Homework 1:
Problem 1:

The Fibonacci function can be implemented with recursive calls. Let denote the number
of recursive calls when is called. For example, , ,
and . We can illustrate this in the following figure where the number of arrows gives
the number of recursive calls.

What is the recurrence expression for

Aside:

We can see from the figure that the problem with this recursion is the multiple calls to the
function with the same argument. It turns out using Mathematica that a closed form expression
for is

	

where of course oscillates between 1 and -1. The function is .

T (n)
fib(n) T (0) = T (1) = 0, T (2) = 2 T (3) = 4

T (4) = 8

T (n + 2)?

T

(1
2 (1 + 5))

n

+ (2

1 + 5)
n

cos(π n) +
(1

2 (1 + 5))
n

− (2

1 + 5)
n

cos(π n)

5
− 2

cos(nπ) Ω((
1 + 5

2
)n)

def fib(n):

 if n <= 1:

 return n

 return fib(n-1)+fib(n-2)

fib(3)

fib(1) fib(2)

fib(1)fib(0)

fib(3)

fib(1) fib(2)

fib(1)fib(0)

fib(2)

fib(1)fib(0)

fib(4)

Problem 2:

A much better implementation of the Fibonacci numbers uses linear lists in Python. Recall that
lista[-1] is the last element of a list, lista[-2] is the penultimate number in the list and
that append appends the argument to the list.

Assuming that the append operation always takes constant time, what is the asymptotic
runtime of this function. What will the function return if n is negative, zero, or one? Use
induction to show that the function correctly calculates the Fibonacci numbers.

Problem 3:
Loop invariants can actually help us to find programming solutions. In Quicksort, we alternate
between partitioning an array and recursion on the obtained partitions of the array. The
partitioning step reorders the elements of an array A around an object p such that

1. all elements in A[:low] are less than p,

2. all elements in A[low:high] are equal to p,

3. all elements in A[high:] are greater than p.

Show that the following pseudo-code (actually Python code) is correct using the invariant

1. all elements in A[:low] are less than p,

2. all elements in A[low:mid] are equal to p,

3. all elements in A[high:] are greater than p.

4. also low <= mid <= high

The invariant says nothing about the elements in A[mid:high].

def fib(n):

 lista = [0,1]

 for i in range(n-2):

 lista.append(lista[-1]+lista[-2])

 return lista[n]

def partition(A, p):

 low = 0; high = len(A); mid=0

 while mid<high:

 a = A[mid]

 if a < p:

 A[mid] = A[low]

 A[low] = a

 low += 1

 mid += 1

 elif a == p:

 mid += 1

 else: # a > p

 A[mid] = A[high-1]	

 A[high-1] = a

 high = high-1

	

Show also that the algorithm terminates. The following drawing might be helpful in
understanding the invariants. There, low points to the array element just after the "smaller than
p" array, etc.

smaller than p equal to p unknown larger than p

low mid high

	Problem 1:
	Aside:
	Problem 2:
	Problem 3:

