
Homework 4
Problem 1:
Show that the following operations of a simplified bank account application are not correct for
multiple threads. Use the notation to denote the event of thread reading variable
and obtaining the value 10 and for the event of thread writing to variable x the
value 10.

You will need to show a history of operations that results in bad values.

Problem 2:
Hyman thought he solved mutual exclusion and its problems were not recognized for decades.
The algorithm is simple. There is an array of booleans want that expresses the desire of a
thread to enter the critical section. There is also a variable turn that indicates which thread
can enter the critical section. The simplified code is

ri(x = 10) i x
wi(x = 10) i

class Account:

	 value: int

def deposit(account: Account, amount: int):

	 account.value += amount

def retrieve(account: Account, amount: int):

	 account.value -= amount

def transfer(source_account: Account,

	 	 destination_account: Account,

 amount: int):

	 source_account.value -= amount

	 destination_account.value += amount

want = [False, False]

turn = 0

def hyman():

	 id = thread_id() # am I thread 0 or thread 1

	 want[id] = True

	 while(turn != id):

	 	 while want[1-id] == True:

	 	 	 pass #waiting for the other

	 	 turn = id

	 #Critical Section

	 want[id] = False

	

I left out the possibility to re-enter the critical section several times.

(a) Write three different histories of Hyman's using the notation of Problem 1.

(b) Give on history that shows that both threads can end up in the same section.

Hint for (b): Start out with the following history:

	

	

	

	

	

	 Thread 0 enters the critical section and sleeps

	 Thread 1 wakes up and now does what?

	

w1(want[1] = True)
r1(turn = 0)
r1(want[0] = False)
w0(want[0] = True)
r0(turn = 0)

	Problem 1:
	Problem 2:

