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Modeling Algorithms
• Algorithms can be implemented, but are not equal to an 

implementation


• Performance is always concrete


• We can only measure what is there


• A given implementation of an algorithm


• On a given platform


• Under given circumstances



Modeling Algorithms
• Goal of algorithm design is not to invent well performing 

algorithms


• Such a thing does not exist


• But to develop algorithms that work well under a large 
variety of circumstances



RAM Model
• Classic Model


• RAM Model


• A machine consists of a CPU and RAM


• CPU has a large number of registers


• Unit costs for:


• Moving data between RAM and CPU


• Calculating between registers



RAM Model
• RAM Model is not accurate


• Operations do not cost the same


• Moving data from RAM to Cache (cache miss) can 
take 200 nsec


• Simple operations take 20 nsec



RAM Model
• Operations are not sequential: 


• Intel 486DX:  0.336 instructions per clock cycle at 33 
MHz = 11.1 Million Instructions per Second (MIPS)


• AMD Ryzen 7 1800X: 84.6 instructions per clock 
cycle at 3.6 GHz = 304,510 MIPS 


• Now: many instructions run in parallel and execution 
overlaps



RAM Model
• Data and instructions are cached in several cache levels


• Caches belong exclusively to a chip


• Core has own L1 / L2 caches


• Up till now:


• Caches are coherent through invalidation


• If one thread changes a cache content, other 
threads will not see the old content


• Cache lines are invalidated and a read results in a 
cache miss



RAM Model
• Effectiveness of caches depends on the instructions and 

data


• Modern algorithm design:


• Find cache aware / cache oblivious algorithms


• Cache aware: Algorithm optimized depending on 
cache parameters


• Cache oblivious: Algorithm does not need cache 
parameters in order to make efficient use of caches



RAM Model
• Threading


• Many tasks can be performed in parallel


• Processes can be broken into threads


• Algorithms need to be thread-safe


• Correct even when execution is split over several 
threads


• Usual tool is locking


• But locking can be detrimental to performance


• Modern algorithms can be lock-free and threadsafe



RAM Model
• Branch prediction and speculative execution


• Because cache misses are long


• Processor will executes statements after a 
conditional statement


• At the danger of these statements not being 
usable



Branch Prediction

Block

if X go to A else go to B

 Block A

 Block B

Code Branch Prediction

Block

if X go to A else go to B

 Block B

Execute B if X is predicted to be false

Block

if X go to A else go to B

 Block A

 Block B

Speculative Execution

Create two streams executing A and B 
in parallel, knowing that one stream’s 
result are thrown out



RAM Model
• Too many if statements and branch prediction and 

speculative execution become ineffective


• Good algorithms can be designed that minimize branches



RAM Model
• Large Data Sets


• RAM is limited and expensive


• This might change soon with Phase Change 
Memories as RAM substitutes


• Some data does not fit into RAM


• Performance becomes dominated by moving data 
from storage into RAM and back


• Modern algorithms can be designed to work well with 
certain storage systems



RAM Model
• Distributed Computing


• Many tasks are to massive to work on a single machine


• Distribute computation over many nodes


• Performance can now be dominated by the costs of 
moving data between machines and / or coordinating 
between them


• Distributed Algorithms



RAM Model
• Parallel Computation


• GPU have millions of simple processing elements


• Modern CUDA algorithms will make use of 
parallelization


• Successors to earlier parallel algorithms 



RAM Model
• Despite it all:


• RAM model has allowed us to develop a set of efficient 
algorithms 


• To which we still add


• However:  Software engineers and algorithm designers 
need to be aware of architecture



RAM Model
• Calculating timings


• Can depend on data


• Example: Sorting algorithm can run much faster on 
almost sorted data (or much worse)


• Can calculate maximum time (pessimistic)


• Can calculate expected time


• Needs to make assumption on probabilities


• Can calculate minimum time (optimistic)


• Usually a useless measure



RAM Model
• Probabilistic algorithms


• Algorithms can make decisions based on probabilities


• Useful in case there is an "adversary" who gets to 
select data


• Example:


• Cryptography:


• Can always break cryptography by guessing keys


• But the probability of breaking cryptography with 
reasonable high probability in a limited amount of 
time should be very small
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Computer Architecture 
(simplified)

Core
(2 Threads)

L1 Instruction 
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction 
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction 
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction 
Cache L1 Data Cache

L2 Cache

L3 Cache

DRAM Storage (Flash)

DRAM Cache



Effects on Performance
• Computers are multi-threaded


• This allows for limited parallelism


• The only source for major performance improvement


• Computers access data through a large number of 
caches


• Cache-aware data structures and algorithms for small 
data


• Storage aware data structures and algorithms for large 
data sets



Effects on Performance
• Performance of a single machine is limited


• Massive computations tend to be distributed


• Low service times usually require distributed 
computations



Review of Landau 
Notation



Algorithm Evaluation
• Program solve instances of a problem


• Good algorithms scale well as instances become large


• Clients are only interested how fast a given instance of a 
given size is solved


• Algorithm designers are interested in designing algorithms 
that work well independent of the size of the instance



Algorithm Evaluation
• Evaluate performance by giving maximum or expected 

run time of a program on an instance size 


• Gives a function  


• Interested in asymptotic behavior

n

ϕ(n)



Algorithm Evaluation
• Example:  Compare , ,  for n2 0.1n3 0.01 ⋅ 2n

n = 0,100,200,…,1000

  n      n**2        0.1n**3     0.01 2**n 
  0  0.000000e+00 0.000000e+00 1.000000e-02 
100  1.000000e+04 1.000000e+05 1.267651e+28 
200  4.000000e+04 8.000000e+05 1.606938e+58 
300  9.000000e+04 2.700000e+06 2.037036e+88 
400  1.600000e+05 6.400000e+06 2.582250e+118 
500  2.500000e+05 1.250000e+07 3.273391e+148 
600  3.600000e+05 2.160000e+07 4.149516e+178 
700  4.900000e+05 3.430000e+07 5.260136e+208 
800  6.400000e+05 5.120000e+07 6.668014e+238 
900  8.100000e+05 7.290000e+07 8.452712e+268 
1000 1.000000e+06 1.000000e+08 1.071509e+299



• To compare the growth use Landau's notation


• Informally


• Big O:    means  grows slower or 
equally fast than  


• Little O:    means  grows slower or than 
 


• Theta:  means  and  grow equally 
fast


• Omega:   means  grows faster than 

f(n) = O(g(n)) f
g

f(n) = o(g(n)) f
g

f(n) = Θ(g(n)) f g

f(n) = Ω(g(n)) f g

Asymptotic Growth



Landau Notation
• Exact definitions


• Little o:


 f(n) = o(g(n)) ⇔ lim
n→∞

f(n)
g(n)

= 0



Landau Notation
• Exact definitions


• Big O:


f(n) = O(g(n)) ⇔ ∃c > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≤ cg(n)



Landau Notation
• Exact definitions


• :
Θ
f(n) = O(g(n)) ⇔ ∃c0 > 0 ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : c0g(n) < f(n) ≤ c1g(n)



Landau Notation
• Exact definitions


• :
Ω
f(n) = Ω(g(n)) ⇔ ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≥ c1g(n)



Landau Notation
• In general, we only look at positive functions


• For analytic functions (complex differentiable), there are 
easier ways to determine the relationship between 
functions



Example
• Use the definition to show that 

2n2 + 4n + 5 = O(n2) for n → ∞



Example
• 


• 


• Pick   and  and find that


• 


• Therefore 


• Notice that we did not care about the exact constants

2n2 + 4n + 5 ≤ 2n2 + 4n2 + 5n2 if  n ≥ 1

2n2 + 4n + 5 ≤ 11n2 if  n ≥ 1

c0 = 12 n0 = 1

∀n > n02n2 + 4n + 5 < 12 ⋅ n2

2n2 + 4n + 5 = O(n2) for n → ∞



Some Useful Theorems
• Assume from now on that all functions  are positive


• 


• We also assume that the functions are analytic


• Differentiable as complex functions (almost 
everywhere)


• This includes all major functions used in engineering


• Implies that they are infinitely often differentiable 
(almost everywhere)

f

∀n ∈ ℕ : f(n) > 0



Some Useful Theorems

• Assume  


• (this means that we also assume that the limit exists)


• Then:  

lim
n→∞

f(n)
g(n)

= a > 0

f(n) = Θ(g(n)) for n → ∞



Some Useful Theorems
• Proof:


• 


• 


• Definition of the limit


•

lim
n→∞

f(n)
g(n)

= a > 0

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : |
f(n)
g(n)

− a | < ϵ

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : a − ϵ <
f(n)
g(n)

< a + ϵ



Some Useful Theorems
• Now we select one particular , namely . 


• For this selection, we have


• 


• We also set 


• 


• Now we have


• 


• Thus by definition:   

ϵ > 0 ϵ = a /2

∃δ > 0∀n > 1/δ : a /2 <
f(n)
g(n)

< (3/2)a

n0 = ⌈1/δ⌉

∀n > n0 : a /2 <
f(n)
g(n)

< (3/2)a

∀n > n0 :
a
2

g(n) < f(n) <
3a
2

g(n)

f(n) = Θ(g(n))



Some Useful Theorems
•   implies  


Proof:


  implies


,


which implies 

f(n) = o(g(n)) f(n) = O(g(n))

f(n) = o(g(n))

lim
n→∞

f(n)
g(n)

= 0

∀ϵ > 0 ∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< ϵ



Some Useful Theorems
We select , which implies 





We select  and obtain


 


which implies 


, i.e. 


ϵ = 1

∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< 1

n0 = ⌈
1
δ

⌉

∀n > n0 :
f(n)
g(n)

< 1

∀n > n0 : f(n) < g(n)

f(n) = O(g(n)



Some Useful Theorems

•   implies 


• Proof is homework

lim
n→∞

f(n)
g(n)

= ∞ f(n) = Ω(g(n)



Examples
• Relationship between   and ?


• Evaluate the asymptotic behavior of  . 


• The limit is of type , so we use the theorem of L'Hôpital


• Take the derivatives of denominator and numerator


• Obtain .


• Because , we have  and 

log(n) n
log n

n
∞
∞

1
n

1
=

1
n

lim
n→∞

1
n

= 0 lim
n→∞

log n
n

= 0 log(n) = o(n)



Examples
• Relationship between  and ?


• 


• Therefore  .

2n 3n

lim
n→∞

2n

3n
= lim

n→∞
(
2
3

)n = 0

2n = o(3n)


