Introduction

Algorithms Thomas Schwarz, SJ

Modeling Algorithms

- Algorithms can be implemented, but are not equal to an implementation
- Performance is always concrete
 - We can only measure what is there
 - A given implementation of an algorithm
 - On a **given** platform
 - Under given circumstances

Modeling Algorithms

- Goal of algorithm design is not to invent well performing algorithms
 - Such a thing does not exist
- But to develop algorithms that work well under a large variety of circumstances

- Classic Model
 - RAM Model
 - A machine consists of a CPU and RAM
 - CPU has a large number of registers
 - Unit costs for:
 - Moving data between RAM and CPU
 - Calculating between registers

- RAM Model is not accurate
 - Operations do not cost the same
 - Moving data from RAM to Cache (cache miss) can take 200 nsec
 - Simple operations take 20 nsec

- Operations are not sequential:
 - Intel 486DX: 0.336 instructions per clock cycle at 33 MHz = 11.1 Million Instructions per Second (MIPS)
 - AMD Ryzen 7 1800X: 84.6 instructions per clock cycle at 3.6 GHz = 304,510 MIPS
- Now: many instructions run in parallel and execution overlaps

- Data and instructions are cached in several cache levels
 - Caches belong exclusively to a chip
 - Core has own L1 / L2 caches
 - Up till now:
 - Caches are coherent through invalidation
 - If one thread changes a cache content, other threads will not see the old content
 - Cache lines are invalidated and a read results in a cache miss

- Effectiveness of caches depends on the instructions and data
- Modern algorithm design:
 - Find cache aware / cache oblivious algorithms
 - Cache aware: Algorithm optimized depending on cache parameters
 - Cache oblivious: Algorithm does not need cache parameters in order to make efficient use of caches

- Threading
 - Many tasks can be performed in parallel
 - Processes can be broken into threads
 - Algorithms need to be <u>thread-safe</u>
 - Correct even when execution is split over several threads
 - Usual tool is locking
 - But locking can be detrimental to performance
 - Modern algorithms can be lock-free and threadsafe

- Branch prediction and speculative execution
 - Because cache misses are long
 - Processor will executes statements after a conditional statement
 - At the danger of these statements not being usable

Branch Prediction

Code

Block if X go to A else go to B Block A Block B

Branch Prediction

Block B	

Execute B if X is predicted to be false

Speculative Execution

Create two streams executing A and B in parallel, knowing that one stream's result are thrown out

- Too many if statements and branch prediction and speculative execution become ineffective
- Good algorithms can be designed that minimize branches

- Large Data Sets
 - RAM is limited and expensive
 - This might change soon with Phase Change Memories as RAM substitutes
 - Some data does not fit into RAM
 - Performance becomes dominated by moving data from storage into RAM and back
 - Modern algorithms can be designed to work well with certain storage systems

- Distributed Computing
 - Many tasks are to massive to work on a single machine
 - Distribute computation over many nodes
 - Performance can now be dominated by the costs of moving data between machines and / or coordinating between them
 - Distributed Algorithms

- Parallel Computation
 - GPU have millions of simple processing elements
 - Modern CUDA algorithms will make use of parallelization
 - Successors to earlier parallel algorithms

- Despite it all:
 - RAM model has allowed us to develop a set of efficient algorithms
 - To which we still add
 - However: Software engineers and algorithm designers need to be aware of architecture

- Calculating timings
 - Can depend on data
 - Example: Sorting algorithm can run much faster on almost sorted data (or much worse)
 - Can calculate maximum time (pessimistic)
 - Can calculate expected time
 - Needs to make assumption on probabilities
 - Can calculate minimum time (optimistic)
 - Usually a useless measure

- Probabilistic algorithms
 - Algorithms can make decisions based on probabilities
 - Useful in case there is an "adversary" who gets to select data
 - Example:
 - Cryptography:
 - Can always break cryptography by guessing keys
 - But the probability of breaking cryptography with reasonable high probability in a limited amount of time should be very small

CS Reality

Thomas Schwarz, SJ

Computer Architecture (simplified)

Core (2 Threads)Core (2 Threads)		Core (2 Threads)		Core (2 Threads)			
L1 Instruction Cache	L1 Data Cache	L1 Instruction Cache	L1 Data Cache	L1 Instruction Cache	L1 Data Cache	L1 Instruction Cache	L1 Data Cache

L2 Cache

L3 Cache

	DRAM Cache
DRAM	Storage (Flash)

Effects on Performance

- Computers are multi-threaded
 - This allows for limited parallelism
 - The only source for major performance improvement
- Computers access data through a large number of caches
 - Cache-aware data structures and algorithms for small data
 - Storage aware data structures and algorithms for large data sets

Effects on Performance

- Performance of a single machine is limited
 - Massive computations tend to be distributed
 - Low service times usually require distributed computations

Review of Landau Notation

Algorithm Evaluation

- Program solve **instances** of a problem
 - Good algorithms scale well as instances become large
- Clients are only interested how fast a given instance of a given size is solved
- Algorithm designers are interested in designing algorithms that work well independent of the size of the instance

Algorithm Evaluation

- Evaluate performance by giving maximum or expected run time of a program on an instance size *n*
 - Gives a function $\phi(n)$
 - Interested in asymptotic behavior

Algorithm Evaluation

• Example: Compare n^2 , $0.1n^3$, $0.01 \cdot 2^n$ for n = 0,100,200,...,1000

n	n**2	0.1n**3	0.01 2**n
0	0.000000e+00	0.000000e+00	1.000000e-02
100	1.000000e+04	1.000000e+05	1.267651e+28
200	4.00000e+04	8.000000e+05	1.606938e+58
300	9.000000e+04	2.700000e+06	2.037036e+88
400	1.600000e+05	6.400000e+06	2.582250e+118
500	2.500000e+05	1.250000e+07	3.273391e+148
600	3.600000e+05	2.160000e+07	4.149516e+178
700	4.900000e+05	3.430000e+07	5.260136e+208
800	6.400000e+05	5.120000e+07	6.668014e+238
900	8.100000e+05	7.290000e+07	8.452712e+268
1000	1.000000e+06	1.000000e+08	1.071509e+299

Asymptotic Growth

- To compare the growth use Landau's notation
 - Informally
 - **Big O:** f(n) = O(g(n)) means f grows slower or equally fast than g
 - Little O: f(n) = o(g(n)) means f grows slower or than g
 - Theta: $f(n) = \Theta(g(n))$ means f and g grow equally fast
 - **Omega:** $f(n) = \Omega(g(n))$ means f grows faster than g

- Exact definitions
 - Little o:

$$f(n) = o(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

- Exact definitions
 - Big O:

 $f(n) = O(g(n)) \Leftrightarrow \exists c > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : |f(n)| \le cg(n)$

- Exact definitions
 - Θ :

 $f(n) = O(g(n)) \Leftrightarrow \exists c_0 > 0 \ \exists c_1 > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : c_0 g(n) < f(n) \le c_1 g(n)$

- Exact definitions
 - Ω:

 $f(n) = \Omega(g(n)) \Leftrightarrow \exists c_1 > 0 \ \exists n_0 > 0 \ \forall n \in \mathbb{N}, n > n_0 : |f(n)| \ge c_1 g(n)$

- In general, we only look at positive functions
- For analytic functions (complex differentiable), there are easier ways to determine the relationship between functions

Example

• Use the definition to show that $2n^2 + 4n + 5 = O(n^2)$ for $n \to \infty$

Example

- $2n^2 + 4n + 5 \le 2n^2 + 4n^2 + 5n^2$ if $n \ge 1$
- $2n^2 + 4n + 5 \le 11n^2$ if $n \ge 1$
- Pick $c_0 = 12$ and $n_0 = 1$ and find that
 - $\forall n > n_0 2n^2 + 4n + 5 < 12 \cdot n^2$
- Therefore $2n^2 + 4n + 5 = O(n^2)$ for $n \to \infty$

Notice that we did not care about the exact constants

- Assume from now on that all functions f are positive
 - $\forall n \in \mathbb{N} : f(n) > 0$
- We also assume that the functions are analytic
 - Differentiable as complex functions (almost everywhere)
 - This includes all major functions used in engineering
 - Implies that they are infinitely often differentiable (almost everywhere)

• Assume
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a > 0$$

- (this means that we also assume that the limit exists)
- Then: $f(n) = \Theta(g(n))$ for $n \to \infty$

• Proof:

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a > 0$$

•
$$\Rightarrow \forall \epsilon > 0 \ \exists \delta > 0 \forall n > 1/\delta : \left| \frac{f(n)}{g(n)} - a \right| < \epsilon$$

• Definition of the limit

• $\Rightarrow \forall \epsilon > 0 \ \exists \delta > 0 \forall n > 1/\delta \ : \ a - \epsilon < \frac{f(n)}{g(n)} < a + \epsilon$

- Now we select one particular $\epsilon > 0$, namely $\epsilon = a/2$.
- For this selection, we have

•
$$\exists \delta > 0 \forall n > 1/\delta$$
 : $a/2 < \frac{f(n)}{g(n)} < (3/2)a$

- We also set $n_0 = \lceil 1/\delta \rceil$

•
$$\forall n > n_0$$
 : $a/2 < \frac{f(n)}{g(n)} < (3/2)a$

• Now we have

•
$$\forall n > n_0$$
: $\frac{a}{2}g(n) < f(n) < \frac{3a}{2}g(n)$

• Thus by definition: $f(n) = \Theta(g(n))$

• f(n) = o(g(n)) implies f(n) = O(g(n))

Proof:

$$f(n) = o(g(n))$$
 implies
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0,$$

which implies $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall n > \frac{1}{\delta}$: $\frac{f(n)}{g(n)} < \epsilon$

We select $\epsilon = 1$, which implies

$$\begin{aligned} \exists \delta > 0 \ \forall n > \frac{1}{\delta} \ : \frac{f(n)}{g(n)} < 1 \end{aligned}$$
 We select $n_0 = \lceil \frac{1}{\delta} \rceil$ and obtain
$$\forall n > n_0 \ : \frac{f(n)}{g(n)} < 1 \end{aligned}$$

which implies

$$\forall n > n_0 : f(n) < g(n), \text{ i.e.}$$

$$f(n) = O(g(n)$$

•
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
 implies $f(n) = \Omega(g(n))$

• Proof is homework

Examples

- Relationship between log(n) and *n*?
- Evaluate the asymptotic behavior of $\frac{\log n}{n}$.
- The limit is of type $\frac{\infty}{\infty}$, so we use the theorem of L'Hôpital
- Take the derivatives of denominator and numerator

• Obtain
$$\frac{\frac{1}{n}}{1} = \frac{1}{n}$$
.
• Because $\lim_{n \to \infty} \frac{1}{n} = 0$, we have $\lim_{n \to \infty} \frac{\log n}{n} = 0$ and $\log(n) = o(n)$

Examples

• Relationship between 2^n and 3^n ?

•
$$\lim_{n \to \infty} \frac{2^n}{3^n} = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0$$

• Therefore $2^n = o(3^n)$.