
Introduction
Algorithms

Thomas Schwarz, SJ

Modeling Algorithms
• Algorithms can be implemented, but are not equal to an

implementation

• Performance is always concrete

• We can only measure what is there

• A given implementation of an algorithm

• On a given platform

• Under given circumstances

Modeling Algorithms
• Goal of algorithm design is not to invent well performing

algorithms

• Such a thing does not exist

• But to develop algorithms that work well under a large
variety of circumstances

RAM Model
• Classic Model

• RAM Model

• A machine consists of a CPU and RAM

• CPU has a large number of registers

• Unit costs for:

• Moving data between RAM and CPU

• Calculating between registers

RAM Model
• RAM Model is not accurate

• Operations do not cost the same

• Moving data from RAM to Cache (cache miss) can
take 200 nsec

• Simple operations take 20 nsec

RAM Model
• Operations are not sequential:

• Intel 486DX: 0.336 instructions per clock cycle at 33
MHz = 11.1 Million Instructions per Second (MIPS)

• AMD Ryzen 7 1800X: 84.6 instructions per clock
cycle at 3.6 GHz = 304,510 MIPS

• Now: many instructions run in parallel and execution
overlaps

RAM Model
• Data and instructions are cached in several cache levels

• Caches belong exclusively to a chip

• Core has own L1 / L2 caches

• Up till now:

• Caches are coherent through invalidation

• If one thread changes a cache content, other
threads will not see the old content

• Cache lines are invalidated and a read results in a
cache miss

RAM Model
• Effectiveness of caches depends on the instructions and

data

• Modern algorithm design:

• Find cache aware / cache oblivious algorithms

• Cache aware: Algorithm optimized depending on
cache parameters

• Cache oblivious: Algorithm does not need cache
parameters in order to make efficient use of caches

RAM Model
• Threading

• Many tasks can be performed in parallel

• Processes can be broken into threads

• Algorithms need to be thread-safe

• Correct even when execution is split over several
threads

• Usual tool is locking

• But locking can be detrimental to performance

• Modern algorithms can be lock-free and threadsafe

RAM Model
• Branch prediction and speculative execution

• Because cache misses are long

• Processor will executes statements after a
conditional statement

• At the danger of these statements not being
usable

Branch Prediction

Block

if X go to A else go to B

 Block A

 Block B

Code Branch Prediction

Block

if X go to A else go to B

 Block B

Execute B if X is predicted to be false

Block

if X go to A else go to B

 Block A

 Block B

Speculative Execution

Create two streams executing A and B
in parallel, knowing that one stream’s
result are thrown out

RAM Model
• Too many if statements and branch prediction and

speculative execution become ineffective

• Good algorithms can be designed that minimize branches

RAM Model
• Large Data Sets

• RAM is limited and expensive

• This might change soon with Phase Change
Memories as RAM substitutes

• Some data does not fit into RAM

• Performance becomes dominated by moving data
from storage into RAM and back

• Modern algorithms can be designed to work well with
certain storage systems

RAM Model
• Distributed Computing

• Many tasks are to massive to work on a single machine

• Distribute computation over many nodes

• Performance can now be dominated by the costs of
moving data between machines and / or coordinating
between them

• Distributed Algorithms

RAM Model
• Parallel Computation

• GPU have millions of simple processing elements

• Modern CUDA algorithms will make use of
parallelization

• Successors to earlier parallel algorithms

RAM Model
• Despite it all:

• RAM model has allowed us to develop a set of efficient
algorithms

• To which we still add

• However: Software engineers and algorithm designers
need to be aware of architecture

RAM Model
• Calculating timings

• Can depend on data

• Example: Sorting algorithm can run much faster on
almost sorted data (or much worse)

• Can calculate maximum time (pessimistic)

• Can calculate expected time

• Needs to make assumption on probabilities

• Can calculate minimum time (optimistic)

• Usually a useless measure

RAM Model
• Probabilistic algorithms

• Algorithms can make decisions based on probabilities

• Useful in case there is an "adversary" who gets to
select data

• Example:

• Cryptography:

• Can always break cryptography by guessing keys

• But the probability of breaking cryptography with
reasonable high probability in a limited amount of
time should be very small

CS Reality
Thomas Schwarz, SJ

Computer Architecture

(simplified)

Core
(2 Threads)

L1 Instruction
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction
Cache L1 Data Cache

Core
(2 Threads)

L1 Instruction
Cache L1 Data Cache

L2 Cache

L3 Cache

DRAM Storage (Flash)

DRAM Cache

Effects on Performance
• Computers are multi-threaded

• This allows for limited parallelism

• The only source for major performance improvement

• Computers access data through a large number of
caches

• Cache-aware data structures and algorithms for small
data

• Storage aware data structures and algorithms for large
data sets

Effects on Performance
• Performance of a single machine is limited

• Massive computations tend to be distributed

• Low service times usually require distributed
computations

Review of Landau
Notation

Algorithm Evaluation
• Program solve instances of a problem

• Good algorithms scale well as instances become large

• Clients are only interested how fast a given instance of a
given size is solved

• Algorithm designers are interested in designing algorithms
that work well independent of the size of the instance

Algorithm Evaluation
• Evaluate performance by giving maximum or expected

run time of a program on an instance size

• Gives a function

• Interested in asymptotic behavior

n

ϕ(n)

Algorithm Evaluation
• Example: Compare , , for n2 0.1n3 0.01 ⋅ 2n

n = 0,100,200,…,1000

 n n**2 0.1n**3 0.01 2**n

 0 0.000000e+00 0.000000e+00 1.000000e-02

100 1.000000e+04 1.000000e+05 1.267651e+28

200 4.000000e+04 8.000000e+05 1.606938e+58

300 9.000000e+04 2.700000e+06 2.037036e+88

400 1.600000e+05 6.400000e+06 2.582250e+118

500 2.500000e+05 1.250000e+07 3.273391e+148

600 3.600000e+05 2.160000e+07 4.149516e+178

700 4.900000e+05 3.430000e+07 5.260136e+208

800 6.400000e+05 5.120000e+07 6.668014e+238

900 8.100000e+05 7.290000e+07 8.452712e+268

1000 1.000000e+06 1.000000e+08 1.071509e+299

• To compare the growth use Landau's notation

• Informally

• Big O: means grows slower or
equally fast than

• Little O: means grows slower or than

• Theta: means and grow equally
fast

• Omega: means grows faster than

f(n) = O(g(n)) f
g

f(n) = o(g(n)) f
g

f(n) = Θ(g(n)) f g

f(n) = Ω(g(n)) f g

Asymptotic Growth

Landau Notation
• Exact definitions

• Little o:

 f(n) = o(g(n)) ⇔ lim
n→∞

f(n)
g(n)

= 0

Landau Notation
• Exact definitions

• Big O:

f(n) = O(g(n)) ⇔ ∃c > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≤ cg(n)

Landau Notation
• Exact definitions

• :
Θ
f(n) = O(g(n)) ⇔ ∃c0 > 0 ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : c0g(n) < f(n) ≤ c1g(n)

Landau Notation
• Exact definitions

• :
Ω
f(n) = Ω(g(n)) ⇔ ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≥ c1g(n)

Landau Notation
• In general, we only look at positive functions

• For analytic functions (complex differentiable), there are
easier ways to determine the relationship between
functions

Example
• Use the definition to show that

2n2 + 4n + 5 = O(n2) for n → ∞

Example
•

•

• Pick and and find that

•

• Therefore

• Notice that we did not care about the exact constants

2n2 + 4n + 5 ≤ 2n2 + 4n2 + 5n2 if n ≥ 1

2n2 + 4n + 5 ≤ 11n2 if n ≥ 1

c0 = 12 n0 = 1

∀n > n02n2 + 4n + 5 < 12 ⋅ n2

2n2 + 4n + 5 = O(n2) for n → ∞

Some Useful Theorems
• Assume from now on that all functions are positive

•

• We also assume that the functions are analytic

• Differentiable as complex functions (almost
everywhere)

• This includes all major functions used in engineering

• Implies that they are infinitely often differentiable
(almost everywhere)

f

∀n ∈ ℕ : f(n) > 0

Some Useful Theorems

• Assume

• (this means that we also assume that the limit exists)

• Then:

lim
n→∞

f(n)
g(n)

= a > 0

f(n) = Θ(g(n)) for n → ∞

Some Useful Theorems
• Proof:

•

•

• Definition of the limit

•

lim
n→∞

f(n)
g(n)

= a > 0

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : |
f(n)
g(n)

− a | < ϵ

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : a − ϵ <
f(n)
g(n)

< a + ϵ

Some Useful Theorems
• Now we select one particular , namely .

• For this selection, we have

•

• We also set

•

• Now we have

•

• Thus by definition:

ϵ > 0 ϵ = a /2

∃δ > 0∀n > 1/δ : a /2 <
f(n)
g(n)

< (3/2)a

n0 = ⌈1/δ⌉

∀n > n0 : a /2 <
f(n)
g(n)

< (3/2)a

∀n > n0 :
a
2

g(n) < f(n) <
3a
2

g(n)

f(n) = Θ(g(n))

Some Useful Theorems
• implies

Proof:

 implies

,

which implies

f(n) = o(g(n)) f(n) = O(g(n))

f(n) = o(g(n))

lim
n→∞

f(n)
g(n)

= 0

∀ϵ > 0 ∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< ϵ

Some Useful Theorems
We select , which implies

We select and obtain

which implies

, i.e.

ϵ = 1

∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< 1

n0 = ⌈
1
δ

⌉

∀n > n0 :
f(n)
g(n)

< 1

∀n > n0 : f(n) < g(n)

f(n) = O(g(n)

Some Useful Theorems

• implies

• Proof is homework

lim
n→∞

f(n)
g(n)

= ∞ f(n) = Ω(g(n)

Examples
• Relationship between and ?

• Evaluate the asymptotic behavior of .

• The limit is of type , so we use the theorem of L'Hôpital

• Take the derivatives of denominator and numerator

• Obtain .

• Because , we have and

log(n) n
log n

n
∞
∞

1
n

1
=

1
n

lim
n→∞

1
n

= 0 lim
n→∞

log n
n

= 0 log(n) = o(n)

Examples
• Relationship between and ?

•

• Therefore .

2n 3n

lim
n→∞

2n

3n
= lim

n→∞
(
2
3

)n = 0

2n = o(3n)

