Mutual Exclusion

Thomas Schwarz, SJ

Locks in C++

#include <mutex>

class Y/{
private:
int some detaill;
mutable std::mutex m;
int get_detail() const { Protect with a lock
std: :lock guard<std::mutex> lock a(m);
return some detail;

Resource Allocation is Initialization

}

public:

Y (int sd) :some detail (sd) {}

friend bool operator==(Y const& lhs, Y consté& rhs) {
1f (&lhs==&rhs)

return true;

int const lhs value=lhs.get detail();
int const rhs value=rhs.get detail();
return lhs value==rhs value;

C++: RAIl

* Programming with locks mistakes:
* Forgetting to lock
* Forgetting to unlock
 Especially if an error is thrown
* Resource Allocation is Initialization

e | ocks are unlocked when the code leaves the scope
because the object no longer exists

Locks In Java

 Make sure to unlock by using unlock

mutex.lock () ;

try A
// .. code goes here ..
) finally |
// .. restore invariants ..

mutex.unlock () ;

Threads

e A sequence of indivisible events

o A: al,az,...,an,

e All events are ordered:
e a1 <ay<ay<...<a,
 Events of two or more threads are interleaved
e Some depend on others
e Event Examples:

e Assign to shared variable; Assign to local variable; Invoke
method; Return from method ...

Threads

 Thread state:
* Program counter
e Local variables
e System state
e Object fields (shared variables)

e Union of thread states

Time

e Time: Shared by threads,

* put threads do not have a common clock
 Events: Instantaneous

* [wo events never happen at the same time

e Events in a thread are totally ordered

Intervals

e Aninterval Ay = (ay, a,) is the time between events a,,

and a,

Intervals

* Intervals might be disjoint

* |n which case we can define a precedence

|
|

e |nterval A precedes interval B:
 a.k.a: A happens before B

e All events in A are before all events in B

Critical Section

 Block of code that can be executed only by one thread

e Mutual exclusion:

o Let CSf.‘ be thread i's kth execution of critical section

. CS} be thread j's [™" execution of the critical section

« THEN either CS} < CS/ or CS) < CS

Goals

e Mutual exclusion
o Either CSA‘ < CSllg or CSllg < CSZ1

e Freedom from deadlock

* |f some thread attempts to acquire the lock then some
thread will acquire the lock

e Freedom from starvation (lockout freedom)

 Every thread that attempts to acquire the lock
eventually succeeds

Mutual Exclusion In
Software only

Warning

* These algorithms are not used in practice

e Efficient locks need hardware support, more than just
registers

* We are using only registers

* |n the sixties, several wrong algorithms were published
claiming to do mutual exclusion

Lock Algorithms for Two
Threads

class LockOne implements Lock {
private boolean[] flag = new boolean[2];
public void lock () {
int 1 = ThreadID.get();
int 3 = 1-1;
flag[1] = true;
while (flag[j]) {}
}
public void unlock () {
int 1 = ThreadID.get();
flag[i] = false;
}

Lock Algorithms for Two
Threads

class LockOne implements Lock {

private boolean|[] flag = new boolean[Z];
public void lock () {
int 1 = ThreadID.get(); i is current thread
int j = i-1; j is the other thread

flag[i] = true;
while (flag[j]) {}

}
public void unlock () {

int 1 = ThreadID.get();
flag[i] = false;

Lock Algorithms for Two

e Assume that we have both threads O and 1 In

the critical section

1.wy(flag[0] = 1) < ry(flag[1] = 0) < CSy
2w, (flag[1] = 1) < r(flag[0] = 0) < C§,

e Since both are still in their critical section, no

flag is set to false.

e Therefore:

Threads

3. ry(flag[1] = 0) < w(flag[1] = 1)

4. ri(flag[0] = 0) < wy(flag[O] = 1)

public void lock()
flag[1i] = true;
while (flagl[j])
}

{

1}

public void unlock()

flag[i] = false;

}

{

Lock Algorithms for Two
Threads

e This leads to a vicious cycle
wy(flag[0] = 1)
o < ry(flag[1] =0) by(1)
o < w(flag[l] =1) by (3)
o < ri(flag[0] =0) by (2)
o < wy(flag[O] =1) by (4)

Lock Algorithms for Two

Threads =wic o oo

while (flag[jl) {}

. .) }
* Algorithm can easily dead-lock public void unlock() |
flag[1i] = false;
}
flag[0]=1
=1

flag[1l]

Lock Algorithms for Two
Threads

A simpler lock algorithm that only works if both threads
are active

class LockTwo i1mplements Lock {

private 1nt victim;

public void lock () {
int 1 = ThreadID.get () ;
victim = 1;
while (victim==1i) {}

}

public void unlock() {}

J

Lock Algorithms for Two
Threads

e Prove mutual exclusion

public void lock () {
victim = i;
while (victim==1) {}
}
public void unlock () ({}

Lock Algorithms for Two
Threads

* Thread is in the critical region:
e W (v=0)<rv=1) w=1)<r@=0)
 Threadis the only one that set v to / and that only once
o Assumew (v =1) < wy(v =0):

e Then I’O(V — 1) never happens public void lock () {

victim = 1i;
o Assume wy(v = 0) < wy(v = 1): while (victim==i) {}
}

bli 1 d lock
e Then r;(v = 0) never happens public void untockl) U

e Contradiction!

Lock Algorithms for Two
Threads

 Peterson's algorithm

e Combines both

public void lock () {

flag[1i] = true;

victim = 1;

while (flagl[j] && victim == 1) {};
}
public void unlock () {

flag[i] = false;
}

Lock Algorithms for Two
Threads

 Peterson's algorithm

e Combines both

express interest to enter
critical section

public void lock () {

flag[1i] = true;

victim = 1;

while (flagl[j] && victim == 1) {};
}
public void unlock () {

flag[1i] = false;
}

Lock Algorithms for Two
Threads

 Peterson's algorithm

e Combines both

Defer to other

public void lock () {

flag[1i] = true;

victim = 1; —

while (flagl[j] && victim == 1) {};
}
public void unlock () {

flag[1i] = false;
}

Lock Algorithms for Two
Threads

 Peterson's algorithm

e Combines both

public void lock () {

flag[1i] = true;

victim = 1;

while (flag[j] && victim == 1) {}; give priority to other
}
public void unlock () {

flag[1i] = false;
}

Lock Algorithms for Two
Threads

 Peterson's algorithm

e Combines both

public void lock () {

flag[1i] = true;
victim = 1;
while (flagl[j] && victim == 1) {};

}

public void unlock() {
flag[i] = false; no longer interested
}

Lock Algorithms for Two
Threads

e Mutual exclusion: Assume both 0 and 1 are in the critical
section

e Observe

e wi(fl1]l=1) <w(v=1)

public void lock () {

flag[l] = true;

victim = 1;

while (flag[j] && victim == 1)
{}7

}
public void unlock () {

flag[i] = false;
}

Lock Algorithms for Two
Threads

e Wo(fl0] =1) <wy(v=0)

public void lock () {

flag[i] = true;

victim = 1;

while (flag[j] && victim == 1)
{};

}
public void unlock () {

flag[i] = false;
}

Lock Algorithms for Two
Threads

e Wwo(v=0) <r(fll]l=1) <ryv=1)

public void lock () {

flag[i] = true;

victim = 1;

while (flag[j] && victim == 1)
{};

}
public void unlock () {

flag[i] = false;
}

Lock Algorithms for Two
Threads

e Assume 0O iIs the last thread to write to victim:

e wi(v=1) <wy(v=0)

Lock Algorithms for Two
Threads

e Combine observations:

public void lock () {
® VVl(fIl] — 1) flag[i] = true;
victim = i;
° <:4Mﬁ(j’== 1) while (flag[j] && victim == 1) {};
}
public void unlock() {
o < WO(V — O) flag[i] = false;
}
o <r(fll]=1)
o < VO(V — 1)

e So thread 0 is still spinning and NOT in the critical
section

Lock Algorithms for Two
Threads

e Deadlock free:

e Assume that the two threads are blocked

e Thread O is blocked if

e 7y(fl11=1) & & ry(v = 0)
e Thread 1 is blocked if

e r(fl0l=1) & &r(v=1)

* |f both flags are asserted then only one is blocked

* |f only one flag is asserted, then the other can proceed

Lock Algorithms for n
Threads

e Filter Algorithm

e n — 1 "waiting rooms" called levels [
Level 1
e At each level: [Lovel 2
e at |least one thread enters level [Level 3

* at least one thread is blocked is many try [Level 4

Critical
Section

 Only one thread makes it to the critical
section

Filter Lock

Peterson lock uses a two-element boolean flag array

* indicates whether a thread is trying to enter the critical
section

Filter lock generalizes with an n element integer level]
array

Each level has a distinct victim field to filter out one thread
Initially, a thread is at level 0.

e Thread A is at level J if it has completed the waiting loop
with level[A]>=j

Filter Lock

class Fililter implements Lock {
int[] level; // level[i] for thread i
int[] victim; // victim[L] for level L

public Filter (int n) {

level = new 1int[n];
victim = new 1nt[n]; 0 '.

n-1

for (int 1 = 1; 1 < n; 1++) {

[ofo]4]ofofofofo]

level[i] = 0;
b}

Thread 2 at level 4

2

1

Filter Lock

class Filter implements Lock {

public void lock() {
for (int L = 1; L < n; L++) {
level[1] = L;
victim[L] = 1i;
while ((4 k != 1i: levellk] >= L) &&
victim[L] == 1) {};
b}
public void unlock () {
level[i] = 0;
b}

Filter Lock

class Filter i1mplements Lock {

public void lock () {
for (int L = 1; L < n; L++) { One level at a time

level [1] = L;
1;
!

victim|[L] =
while ((4 k !'= i: levellk] >= 1) &&
victim|[L] == 1) {};
b}
public void unlock () {
level[1] = 0;
b}

Filter Lock

class Filter implements Lock {

public void lock () {

for (int L = 1; L < n; L++) { Announce intention to enter
level[1] = L;
victim|[L] = 1;
while ((d4 k !'= i: levellk] >= L) &&
victim[L] == 1) {};
b}
public void unlock () {

level[i] = 0;
1

Filter Lock

class Filter implements Lock {

public void lock () {
for (int L = 1; L < n; L++) {
level[1] = L;
1
|

Give priority to anyone but

victim|[L] =

while ((d4 k !'= i: levellk] >= L) &&
victim[L] == 1) {};
b}
public void unlock () {

level[i] = 0;
1

Filter Lock

class Filter implements Lock {

Wait as long as someone else
public void lock () { is at same of higher level and |
for (int L = 1; L < n; L++) { am the designated victim

level [1] = L;
i
|

victim|[L] =
while ((4 k

b3
public void unlock () {

level[i] = 0;
1

Filter Lock

class Filter implements Lock {

public void lock () { Thread enters level L
for (int L = 1; L < n; L++) { when it completes the

level[1] = L; loop
1
!

victim|[L] =

while ((A4 k !'= 1i: levellk] >= & &
victim[L] == 1) {};
b}
public void unlock () {

level[i] = 0;
1

Filter Lock

e Claim:
e Start at level L=0

e At most n-L threads enter level L

e Mutual exclusion at level L = n-1

Filter Lock

Induction hypothesis:
e No more thann — (L — 1) threads at level L — 1

Assume all at level L. — 1 enter level L
Assume A is the last to write victim[L]

Want to show: A must have seen B in level[L] and since
victim[L] == A could not have entered

Filter Lock

e From code:

public void lock () {
for (int L = 1; L < n; L++) {

level[1] = L;

victim[L] = 1;

while ((4 k !'= 1i: levell[k] >= L) &&
victim[L] == 1) {};

b3

o wp(level|B] = L) < wgy(victim[L] = B)

Filter Lock

e From code:

public void lock () {
for (int L = 1; L < n; L++) {

level[1] = L;

victim[L] = 1;

while ((4 k '= i: levell[k] >= L) &&
victim[L] == 1) {};

b3

o wy(victim[L] = A) < ry(level[B]) < r(victim[L])

Filter Lock

e By assumption A is the last to write to victim[L]:

o wy(victim[L] = B) < w,(victim[L] = A)

Filter Lock

e Combining observations:
e wp(level|B] = L) < wgy(victim[L] = B)
o wy(victim[L] = A) < ry(level|B]) < r,(victim[L])

o wy(victim[L] = B) < w,(victim[L] = A)

Filter Lock

e Combining Observations
e wp(level|B] = L) < wgy(victim[L] = B)
o < wy(victim[L] = A) < ry(level|B])
o < ry(victim[L])

* Aread level[B]>=L and victim[L]=A, so A could not have
entered level L

Filter Lock

e Filter is starvation-free

e Reverse induction on number of levels

e Base case: level n — 1: There is at most one thread, so
there can be no starvation

* |nduction step:
* Assume A is stuck at level .
e |H: All higher levels have eventually emptied out

e Once A sets level[A] = j: Any thread reading level[A] is
prevented from entering level .

Filter Lock

* All threads stuck at level j are in the waiting loop

public void lock () {
for (int L = 1; L < n; L++) {
level[1]
victim[L]
while ((4 k '= i: levell[k] >= L) &&
victim[L] == 1) {};

Ly
1;
b}

e Values of victim and level fields no longer change

Filter Lock

* Argue by induction on the number of threads at level.
* |f Ais the only one, then it will enter level j+1
* |nduction step: Assume A and B are stuck at level .

* Ais stuck as long as it reads: victim[j]=A

* Bis stuck as long as it reads: victim[j]=B

e Since the victim field is no longer written, one of them wiill
enter level j+1.

* This reduces the number of threads stuck by one

e |H: All these make progress

Filter Lock

Filter Lock

* Properties:
e No starvation
e A fortiori: no deadlocks

 But threads can be overtaken by others

Lock Algorithms: Bakery

e |dea:
* You enter the waiting queue and take a number
e Wait until all lower numbers have been served

* Use lexicographic ordering on pairs of threads x numbers

Lock Algorithms: Bakery

Use a flag and a label array 0 '. ,. n-1

LfIf [¢ [f I [¢ [f |f |
[0fof4jolof5]o]o]
class Bakery implements Lock { I I

e [abels

boolean|[] flag;
Label[] label;
public Bakery (i1nt n) {

flag = new boolean[n]; CS
label = new Label[n];
for (int 1 = 0; 1 < n; i++) {

flagli] = false; label[1] = 0O;

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() {
flag[1i] = true;
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() {
flag[i] = true; Doorway
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() | am interested
flag[1i] = true;
label[1] = max(label[0],..,label[n-1])+1;

while (3k flag[k]
&§& (labelf1],1) > (labellk],k));

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock () { Take increasing labels
flag[i] = true; read in arbitrary order
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock () {

flagl[i] = true;
label[1] = max(label[0],.., label[n-1])+1;
while (3k flaglk] Someone is interested

&& (labell1],1) > (labellk],k));

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() {
flag[1i] = true;
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));
} And they have a lower label

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() {
flag[1i] = true;
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));
} So | am waiting

Lock Algorithms: Bakery

class Bakery implements Lock {

public void lock() {
flag[1i] = true;
label[1] = max(label[0],..,label[n-1])+1;
while (dk flagl[k]
&§& (label[i],1) > (labellk],k));

Lock Algorithms: Bakery

* Jo unlock, just express that you are no longer interested

public void unlock ()
flag[1i] = false;

J

J

Lock Algorithms: Bakery

 No deadlock
* There is always one thread with earliest label

 Ties are impossible

Lock Algorithms: Bakery

® 'If DA < DB then
e A’s |abel is smaller
e And:

e writeA(label[A]) < readB(label[A]) < writeB(label[B]) <
readB(flag[A])

e S0 B sees
e smaller label for A

* |ocked out while flag[A] is true

Lock Algorithms: Bakery

 Mutual Exclusion
e Suppose A and B are in CS together
e Suppose A has earlier label
e \When B entered, it must have seen:

e flag[A]J==0 or label(A) > label(B)

e But labels are strictly increasing so:

* B must have seen flag[A] ==

Lock Algorithms: Bakery

 Mutual Exclusion:
 Therefore: Labelings < ra(flag[A])
o < wa(flag[A]
e < Labelinga

 This contradicts the assumption that A has an earlier
label

Lock Algorithms: Bakery

* Why is this not practicable:
 |abels cannot be guaranteed to be always increasing

 Threads need to read as many registers as there are
potential threads

