
Mutual Exclusion
Thomas Schwarz, SJ

Locks in C++
#include <mutex>

class Y{

private:

 int some_detail;

 mutable std::mutex m;

 int get_detail() const {

 std::lock_guard<std::mutex> lock_a(m);

 return some_detail;

 }

public:

 Y(int sd):some_detail(sd){}

 friend bool operator==(Y const& lhs, Y const& rhs) {

 if(&lhs==&rhs)

 return true;

 int const lhs_value=lhs.get_detail();

 int const rhs_value=rhs.get_detail();

 return lhs_value==rhs_value;

 }

};

Protect with a lock

Resource Allocation is Initialization

C++: RAII
• Programming with locks mistakes:

• Forgetting to lock

• Forgetting to unlock

• Especially if an error is thrown

• Resource Allocation is Initialization

• Locks are unlocked when the code leaves the scope
because the object no longer exists

Locks in Java
• Make sure to unlock by using unlock

mutex.lock();

try {

 // … code goes here …

} finally {

 // … restore invariants …

 mutex.unlock();

}

Threads
• A sequence of indivisible events

• A:

• All events are ordered:

•

• Events of two or more threads are interleaved

• Some depend on others

• Event Examples:

• Assign to shared variable; Assign to local variable; Invoke
method; Return from method …

a1, a2, …, an, …

a1 < a2 < a3 < … < an

Threads
• Thread state:

• Program counter

• Local variables

• System state

• Object fields (shared variables)

• Union of thread states

Time
• Time: Shared by threads,

• but threads do not have a common clock

• Events: Instantaneous

• Two events never happen at the same time

• Events in a thread are totally ordered

Intervals
• An interval is the time between events

and

• Intervals might overlap

A0 = (a0, a1) a0
a1

Intervals
• Intervals might be disjoint

• In which case we can define a precedence

• Interval A precedes interval B:

• a.k.a: A happens before B

• All events in A are before all events in B

Critical Section
• Block of code that can be executed only by one thread

• Mutual exclusion:

• Let be thread 's execution of critical section

• be thread 's execution of the critical section

• THEN either or

CSk
i i kth

CSl
j j lth

CSk
i < CSl

j CSj
l < CSk

i

Goals
• Mutual exclusion

• Either or

• Freedom from deadlock

• If some thread attempts to acquire the lock then some
thread will acquire the lock

• Freedom from starvation (lockout freedom)

• Every thread that attempts to acquire the lock
eventually succeeds

CSk
A < CSl

B CSl
B < CSj

A

Mutual Exclusion in
Software only

Warning
• These algorithms are not used in practice

• Efficient locks need hardware support, more than just
registers

• We are using only registers

• In the sixties, several wrong algorithms were published
claiming to do mutual exclusion

Lock Algorithms for Two
Threads

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

 int i = ThreadID.get();

 int j = i-1;

 flag[i] = true;

 while (flag[j]) {}

}

public void unlock() {

 int i = ThreadID.get();

 flag[i] = false;

}

Lock Algorithms for Two
Threads

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

 int i = ThreadID.get();

 int j = i-1;

 flag[i] = true;

 while (flag[j]) {}

}

public void unlock() {

 int i = ThreadID.get();

 flag[i] = false;

}

i is current thread

j is the other thread

Lock Algorithms for Two
Threads

• Assume that we have both threads 0 and 1 in
the critical section

1.

2.

• Since both are still in their critical section, no
flag is set to false.

• Therefore:

3.

4.

w0(flag[0] = 1) < r0(flag[1] = 0) < CS0

w1(flag[1] = 1) < r1(flag[0] = 0) < CS1

r0(flag[1] = 0) < w1(flag[1] = 1)

r1(flag[0] = 0) < w0(flag[0] = 1)

public void lock() {

 flag[i] = true;

 while (flag[j]) {}

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• This leads to a vicious cycle

•

• by (1)

• by (3)

• by (2)

• by (4)

w0(flag[0] = 1)

< r0(flag[1] = 0)

< w1(flag[1] = 1)

< r1(flag[0] = 0)

< w0(flag[0] = 1)

Lock Algorithms for Two
Threads

• Algorithm can easily dead-lock

public void lock() {

 flag[i] = true;

 while (flag[j]) {}

}

public void unlock() {

 flag[i] = false;

}

flag[0]=1

flag[1]=1

;

;

;

;

;

;

;

Lock Algorithms for Two
Threads

• A simpler lock algorithm that only works if both threads
are active

class LockTwo implements Lock {

 private int victim;

 public void lock() {

 int i = ThreadID.get();

 victim = i;

 while (victim==i) {}

 }

 public void unlock() {}

}

Lock Algorithms for Two
Threads

• Prove mutual exclusion

 public void lock() {

 victim = i;

 while (victim==i) {}

 }

 public void unlock() {}

Lock Algorithms for Two
Threads

• Thread i is in the critical region:

•

• Thread i is the only one that set v to i and that only once

• Assume :

• Then never happens

• Assume :

• Then never happens

• Contradiction!

w0(v = 0) < r0(v = 1) w1(v = 1) < r1(v = 0)

w1(v = 1) < w0(v = 0)

r0(v = 1)

w0(v = 0) < w1(v = 1)

r1(v = 0)

 public void lock() {

 victim = i;

 while (victim==i) {}

 }

 public void unlock() {}

Lock Algorithms for Two
Threads

• Peterson's algorithm

• Combines both

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i) {};

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• Peterson's algorithm

• Combines both

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i) {};

}

public void unlock() {

 flag[i] = false;

}

express interest to enter
critical section

Lock Algorithms for Two
Threads

• Peterson's algorithm

• Combines both

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i) {};

}

public void unlock() {

 flag[i] = false;

}

Defer to other

Lock Algorithms for Two
Threads

• Peterson's algorithm

• Combines both

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i) {};

}

public void unlock() {

 flag[i] = false;

}

give priority to other

Lock Algorithms for Two
Threads

• Peterson's algorithm

• Combines both

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i) {};

}

public void unlock() {

 flag[i] = false;

}

no longer interested

Lock Algorithms for Two
Threads

• Mutual exclusion: Assume both 0 and 1 are in the critical
section

• Observe

• w1(f [1] = 1) < w1(v = 1)
public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i)
{};

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• w0(f [0] = 1) < w0(v = 0)

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i)
{};

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• w0(v = 0) < r0(f [1] = 1) < r0(v = 1)

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i)
{};

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• Assume 0 is the last thread to write to victim:

• w1(v = 1) < w0(v = 0)

Lock Algorithms for Two
Threads

• Combine observations:

•

•

•

•

•

• So thread 0 is still spinning and NOT in the critical
section

w1(f [1] = 1)

< w1(v = 1)

< w0(v = 0)

< r0(f [1] = 1)

< r0(v = 1)

public void lock() {

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i){};

}

public void unlock() {

 flag[i] = false;

}

Lock Algorithms for Two
Threads

• Deadlock free:

• Assume that the two threads are blocked

• Thread 0 is blocked if

•

• Thread 1 is blocked if

•

• If both flags are asserted then only one is blocked

• If only one flag is asserted, then the other can proceed

r0(f [1] = 1) & & r0(v = 0)

r1(f [0] = 1) & & r1(v = 1)

Lock Algorithms for n
Threads

• Filter Algorithm

• "waiting rooms" called levels

• At each level:

• at least one thread enters level

• at least one thread is blocked is many try

• Only one thread makes it to the critical
section

n − 1

Critical
Section

Level 4

Level 3

Level 2

Level 1

Filter Lock
• Peterson lock uses a two-element boolean flag array

• indicates whether a thread is trying to enter the critical
section

• Filter lock generalizes with an n element integer level[]
array

• Each level has a distinct victim field to filter out one thread

• Initially, a thread is at level 0.

• Thread A is at level j if it has completed the waiting loop
with level[A]>=j

Filter Lock
class Filter implements Lock {

 int[] level; // level[i] for thread i

 int[] victim; // victim[L] for level L

 public Filter(int n) {

 level = new int[n];

 victim = new int[n];

 for (int i = 1; i < n; i++) {

 level[i] = 0;

 }}

…

}

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

One level at a time

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

Announce intention to enter
L

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

Give priority to anyone but
me

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

Wait as long as someone else
is at same of higher level and I

am the designated victim

Filter Lock
class Filter implements Lock {

 …

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

 public void unlock() {

 level[i] = 0;

 }}

/∃

Thread enters level L
when it completes the

loop

Filter Lock
• Claim:

• Start at level L=0

• At most n-L threads enter level L

• Mutual exclusion at level L = n-1

Filter Lock
• Induction hypothesis:

• No more than threads at level

• Assume all at level enter level

• Assume A is the last to write victim[L]

• Want to show: A must have seen B in level[L] and since
victim[L] == A could not have entered

n − (L − 1) L − 1

L − 1 L

Filter Lock
• From code:

• wB(level[B] = L) < wB(victim[L] = B)

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

/∃

Filter Lock
• From code:

• wA(victim[L] = A) < rA(level[B]) < rA(victim[L])

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

/∃

Filter Lock
• By assumption A is the last to write to victim[L]:

• wB(victim[L] = B) < wA(victim[L] = A)

Filter Lock
• Combining observations:

•

•

•

wB(level[B] = L) < wB(victim[L] = B)

wA(victim[L] = A) < rA(level[B]) < rA(victim[L])

wB(victim[L] = B) < wA(victim[L] = A)

Filter Lock
• Combining Observations

•

•

•

• A read level[B]>=L and victim[L]=A, so A could not have
entered level L

wB(level[B] = L) < wB(victim[L] = B)

< wA(victim[L] = A) < rA(level[B])

< rA(victim[L])

Filter Lock
• Filter is starvation-free

• Reverse induction on number of levels

• Base case: level : There is at most one thread, so
there can be no starvation

• Induction step:

• Assume A is stuck at level j.

• IH: All higher levels have eventually emptied out

• Once A sets level[A] = j: Any thread reading level[A] is
prevented from entering level j.

n − 1

Filter Lock
• All threads stuck at level j are in the waiting loop

• Values of victim and level fields no longer change

 public void lock(){

 for (int L = 1; L < n; L++) {

 level[i] = L;

 victim[L] = i;

 while ((k != i: level[k] >= L) &&

 victim[L] == i) {};

 }}

/∃

Filter Lock
• Argue by induction on the number of threads at level j.

• If A is the only one, then it will enter level j+1

• Induction step: Assume A and B are stuck at level j.

• A is stuck as long as it reads: victim[j]=A

• B is stuck as long as it reads: victim[j]=B

• Since the victim field is no longer written, one of them will
enter level j+1.

• This reduces the number of threads stuck by one

• IH: All these make progress

Filter Lock

Filter Lock
• Properties:

• No starvation

• A fortiori: no deadlocks

• But threads can be overtaken by others

Lock Algorithms: Bakery
• Idea:

• You enter the waiting queue and take a number

• Wait until all lower numbers have been served

• Use lexicographic ordering on pairs of threads x numbers

Lock Algorithms: Bakery
• Use a flag and a label array

• Labels

class Bakery implements Lock {

 boolean[] flag;

 Label[] label;

 public Bakery (int n) {

 flag = new boolean[n];

 label = new Label[n];

 for (int i = 0; i < n; i++) {

 flag[i] = false; label[i] = 0;

 }

 }

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

Doorway

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

I am interested

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

Take increasing labels

read in arbitrary order

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃ Someone is interested

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

And they have a lower label

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

So I am waiting

Lock Algorithms: Bakery
class Bakery implements Lock {

 …

 public void lock() {

 flag[i] = true;

 label[i] = max(label[0],…,label[n-1])+1;

 while (k flag[k]

 && (label[i],i) > (label[k],k));

 }

∃

Lock Algorithms: Bakery
• To unlock, just express that you are no longer interested

 public void unlock() {

 flag[i] = false;

 }

}

Lock Algorithms: Bakery
• No deadlock

• There is always one thread with earliest label

• Ties are impossible

Lock Algorithms: Bakery
• •If then

• A’s label is smaller

• And:

• writeA(label[A]) < readB(label[A]) < writeB(label[B]) <
readB(flag[A])

• So B sees

• smaller label for A

• locked out while flag[A] is true

DA < DB

Lock Algorithms: Bakery
• Mutual Exclusion

• Suppose A and B are in CS together

• Suppose A has earlier label

• When B entered, it must have seen:

• flag[A]==0 or label(A) > label(B)

• But labels are strictly increasing so:

• B must have seen flag[A] == 0

Lock Algorithms: Bakery
• Mutual Exclusion:

• Therefore: LabelingB < rB(flag[A])

• < wA(flag[A]

• < LabelingA

• This contradicts the assumption that A has an earlier
label

Lock Algorithms: Bakery
• Why is this not practicable:

• Labels cannot be guaranteed to be always increasing

• Threads need to read as many registers as there are
potential threads

