
Concurrent
Computation

Thomas Schwarz, SJ

Concurrent Computation

Concurrent Objects
• What is a concurrent object?

• How do we describe one

• How do we implement one?

• How do we tell if we are right?

Concurrent Objects
• Use

• Safety (a.k.a. Correctness)

• Liveness (a.k.a. progress)

• Base correctness on some equivalence with sequential behavior

• We will look at:

• Sequential consistency

• Linearizability

• Quiescent consistency

• Progress:

• Blocking

• Wait-free

Example: FIFO Queue
• Insert at the tail, pop at the head

Lock-Based FIFO Queue
• Fields protected by

a single, shared
lock

class LockBasedQueue<T> {
 int head, tail;
 T[] items;
 Lock lock;
 public LockBasedQueue(int capacity) {
 head = 0; tail = 0;
 lock = new ReentrantLock();
 items = (T[]) new Object[capacity];
}

Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

only one operation
at a time

Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

if empty, throw
exception

Lock will still be
unlocked

Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

 Queue not empty:

Remove first
element
Reset head

Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException {
 lock.lock();
 try {
 if (tail == head)
 throw new EmptyException();
 T x = items[head % items.length];
 head++;
 return x;
 } finally {
 lock.unlock();
 }
}

Return result

Lock-Based FIFO Queue
• Implementing DEQueue

public T enq() throws FullException{
 lock.lock();
 try {
 if (tail-1 == items.length)
 throw new FullException();
 items[tail % items.length]=x;
 tail++;
 } finally {
 lock.unlock();
 }
}

Lock-Based FIFO Queue
• Timeline

• A enqueues

• B enqueues

• C dequeues

• First time with
empty
exception

• Second time
returning B's
insert

lock()

enq()
unlock()

lock()

deq()
unlock()
lock()

lock()

enq()
unlock()

deq()
unlock()

C C AB

Lock Based FIFO Queue
• Should be correct because concurrency is very limited

Wait-free 2-Thread Queue
• Mutual exclusion makes safety guarantees easy

• But according to Amdahls law, has very little potential
for speed-up

• Can build a wait-free queue, but only if there are only two
threads:

• One thread only enqueues

• One thread only dequeues

Wait-free 2-Thread Queue
• Create cyclic queue as before

public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Wait-free 2-Thread Queue
public class WaitFreeQueue {

 int head = 0, tail = 0;
 items = (T[]) new Object[capacity];

 public void enq(Item x) {
 while (tail-head == capacity); // busy-wait
 items[tail % capacity] = x; tail++;
 }
 public Item deq() {
 while (tail == head); // busy-wait
 Item item = items[head % capacity]; head++;
 return item;
}}

Consensus
Thomas Schwarz, SJ

Consensus
• Consensus object has a single method

• int decide(int v)

• Each thread calls decide exactly once

• Output is

• consistent: all threads decide on the same value

• valid: the common decision value is some thread's
input

Consensus
• A class C solves n-thread consensus if there exists a

consensus protocol using any number of objects of class
C and any number of atomic registers

• Consensus number n is the largest n for which that class
solves n-thread consensus

Binary Consensus
• Two threads decide on 0 or 1

Binary Consensus
• Model execution with a tree model of state transitions

• A state is called univalent if all children decide on the
same value

• A state is called bivalent otherwise

Binary Consensus

Binary Consensus
• Lemma 1: Every 2-thread consensus protocol has a bivalent

initial state

• Proof:

• Initial state: A has input 0 and B has input 1

• If A finishes the protocol before B takes a step, then A
must decide on 0, because this is the only input it has seen

• If B finishes the protocol before A takes a step, then A
must decide on 1

• It follows that the initial state where A has 0 and B has 1 is
bivalent

Binary Consensus
• Lemma 2: Every n-thread consensus protocol has a

bivalent initial state

• Homework 3

Binary Consensus
• A protocol state is critical if

• It is bivalent

• If any thread moves, the protocol state becomes
univalent

Binary Consensus
• Lemma 3: Every wait-free consensus protocol has a

critical state

• Proof: Suppose not.

• The protocol has a bivalent initial state.

• As long as there is thread that can move without
making the state univalent, let this thread move

• If the protocol runs for-ever, then it is not wait-free

• Otherwise, the protocol eventually enters a state where
no such move is possible, which is a critical state

Binary Consensus
• Atomic registers have consensus number 1

• Suppose there is a binary consensus protocol for two
threads A and B

• By Lemma 3, the protocol reaches a critical state s

• WLOG: A's next move carries the protocol to a 0-
valent state and B's next move to a 1-valent state

Binary Consensus
• Case 1: A reads a certain register

• Scenario 1: B moves first

• Drives protocol to a 1-valent
state

• Then runs solo

• Scenario 2: A moves first driving
protocol to a 0-valent state.

• B then moves and runs solo

• But States s' and s'' are
undistinguishable for B, so they
should have the same outcome

Binary Consensus
• In the critical state:

• Both write to different
registers and

• If A moves first, then we
go to a 0-valent state

• If B moves first, then we
go to a 1-valent state.

• But if the other then
writes their register, we
have the same state,
which is therefore both 0-
and 1-valent

r0 r1

Binary Consensus
• Remaining case:

• A and B write to the same
register

• Scenario 1: A writes and
then B runs solo: 0-valent

• Scenario 2: B writes and
then runs solo: 1-valent

• But states s' and s'' are
indistinguishable

Binary Consensus
• Impossible to construct a wait-free consensus protocol

with atomic registers only

FIFO Queues
• Previously: wait-free FIFO queue using only atomic

registers

• AS LONG AS one enqueuer thread and one dequeuer
thread

• Assume that we have a wait-free FIFO queue with two
dequeuers

•

FIFO Queues
• 2-Dequeuer FIFO Queue solves 2-thread consensus

• Idea: Place a WIN and a LOOSE value into the queue

FIFO Queues
• Each thread writes a value to the array

FIFO Queues
• Each thread takes an item from the queue

FIFO Queues
public class QueueConsensus<T> extends ConsensusProtocol<T> {
private static final int WIN = 0; // first thread
private static final int LOSE = 1; // second thread

Queue queue;
// initialize queue with two items
public QueueConsensus() {
 queue = new Queue();
 queue.enq(WIN);
 queue.enq(LOSE); }
//figure out which thread was first
 public T decide(T Value) {
 propose(value);
 int status = queue.deq();
 int i = ThreadID.get();
 if (status == WIN)
 return proposed[i];
 else
 return proposed[1-i];
 }
}

FIFO Queues
• Correctness:

• One thread gets the red ball

• The other thread gets the black ball

• Winner decides on their own value

• Looser can find winner's value in the array

FIFO Queues
• Therefore:

• It is impossible to implement a wait-free two dequeuer
FIFO queue from atomic registers

FIFO Queues
• FIFO queues cannot solve three-consensus

