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Concurrent Objects
• What is a concurrent object?


• How do we describe one


• How do we implement one?


• How do we tell if we are right?



Concurrent Objects
• Use 


• Safety (a.k.a. Correctness)


• Liveness (a.k.a. progress)


• Base correctness on some equivalence with sequential behavior


• We will look at:


• Sequential consistency


• Linearizability


• Quiescent consistency


• Progress: 


• Blocking


• Wait-free



Example: FIFO Queue
• Insert at the tail, pop at the head



Lock-Based FIFO Queue
• Fields protected by 

a single, shared 
lock

class LockBasedQueue<T> {  
  int head, tail; 
  T[] items; 
  Lock lock;  
  public LockBasedQueue(int capacity) { 
    head = 0; tail = 0; 
    lock = new ReentrantLock(); 
    items = (T[]) new Object[capacity]; 
}  



Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  



Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

only one operation 
at a time



Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

if empty, throw 
exception 

Lock will still be 
unlocked 



Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

 Queue not empty: 

Remove first 
element 
Reset head 



Lock-Based FIFO Queue
• Implementing DEQueue

public T deq() throws EmptyException { 
  lock.lock();              
  try {       
    if (tail == head)         
       throw new EmptyException();       
    T x = items[head % items.length];       
    head++;       
    return x;     
  } finally {       
    lock.unlock();     
  }   
}  

Return result 



Lock-Based FIFO Queue
• Implementing DEQueue

public T enq() throws FullException{ 
  lock.lock();              
  try {       
    if (tail-1 == items.length)         
       throw new FullException();       
    items[tail % items.length]=x;       
    tail++;    
  } finally {       
    lock.unlock();     
  }   
}  



Lock-Based FIFO Queue
• Timeline


• A enqueues


• B enqueues


• C dequeues


• First time with 
empty 
exception


• Second time 
returning B's 
insert 
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Lock Based FIFO Queue
• Should be correct because concurrency is very limited



Wait-free 2-Thread Queue
• Mutual exclusion makes safety guarantees easy


• But according to Amdahls law, has very little potential 
for speed-up


• Can build a wait-free queue, but only if there are only two 
threads:


• One thread only enqueues


• One thread only dequeues



Wait-free 2-Thread Queue
• Create cyclic queue as before

public class WaitFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 



Wait-free 2-Thread Queue
public class WaitFreeQueue { 

  int head = 0, tail = 0;  
  items = (T[]) new Object[capacity];     

  public void enq(Item x) { 
    while (tail-head == capacity); // busy-wait 
    items[tail % capacity] = x; tail++; 
  } 
  public Item deq() { 
     while (tail == head);     // busy-wait 
     Item item = items[head % capacity]; head++; 
     return item; 
}} 
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Consensus
• Consensus object has a single method 


• int decide(int v) 

• Each thread calls decide exactly once


• Output is


• consistent:  all threads decide on the same value


• valid: the common decision value is some thread's 
input



Consensus
• A class C solves n-thread consensus if there exists a 

consensus protocol using any number of objects of class 
C and any number of atomic registers


• Consensus number n is the largest n for which that class 
solves n-thread consensus



Binary Consensus
• Two threads decide on 0 or 1



Binary Consensus
• Model execution with a tree model of state transitions


• A state is called univalent if all children decide on the 
same value


• A state is called bivalent otherwise



Binary Consensus



Binary Consensus
• Lemma 1: Every 2-thread consensus protocol has a bivalent 

initial state


• Proof:


• Initial state: A has input 0 and B has input 1


• If A finishes the protocol before B takes a step, then A 
must decide on 0, because this is the only input it has seen


• If B finishes the protocol before A takes a step, then A 
must decide on 1


• It follows that the initial state where A has 0 and B has 1 is 
bivalent



Binary Consensus
• Lemma 2: Every n-thread consensus protocol has a 

bivalent initial state


• Homework 3



Binary Consensus
• A protocol state is critical if 

• It is bivalent


• If any thread moves, the protocol state becomes 
univalent



Binary Consensus
• Lemma 3: Every wait-free consensus protocol has a 

critical state


• Proof: Suppose not.


• The protocol has a bivalent initial state. 


• As long as there is thread that can move without 
making the state univalent, let this thread move


• If the protocol runs for-ever, then it is not wait-free


• Otherwise, the protocol eventually enters a state where 
no such move is possible, which is a critical state



Binary Consensus
• Atomic registers have consensus number 1


• Suppose there is a binary consensus protocol for two 
threads A and B


• By Lemma 3, the protocol reaches a critical state s 

• WLOG: A's next move carries the protocol to a 0-
valent state and B's next move to a 1-valent state



Binary Consensus
• Case 1: A reads a certain register


• Scenario 1: B moves first


• Drives protocol to a 1-valent 
state


• Then runs solo


• Scenario 2: A moves first driving 
protocol to a 0-valent state.


• B then moves and runs solo


• But States s' and s'' are 
undistinguishable for B, so they 
should have the same outcome



Binary Consensus
• In the critical state:


• Both write to different 
registers  and 


• If A moves first, then we 
go to a 0-valent state


• If B moves first, then we 
go to a 1-valent state.


• But if the other then 
writes their register, we 
have the same state, 
which is therefore both 0- 
and 1-valent

r0 r1



Binary Consensus
• Remaining case:


• A and B write to the same 
register


• Scenario 1: A writes and 
then B runs solo: 0-valent


• Scenario 2: B writes and 
then runs solo: 1-valent


• But states s' and s'' are 
indistinguishable



Binary Consensus
• Impossible to construct a wait-free consensus protocol 

with atomic registers only



FIFO Queues
• Previously: wait-free FIFO queue using only atomic 

registers


• AS LONG AS one enqueuer thread and one dequeuer 
thread


• Assume that we have a wait-free FIFO queue with two 
dequeuers


•



FIFO Queues
• 2-Dequeuer FIFO Queue solves 2-thread consensus


• Idea: Place a WIN and a LOOSE value into the queue



FIFO Queues
• Each thread writes a value to the array



FIFO Queues
• Each thread takes an item from the queue



FIFO Queues
public class QueueConsensus<T> extends ConsensusProtocol<T> {  
private static final int WIN = 0; // first thread  
private static final int LOSE = 1; // second thread  

Queue queue;  
// initialize queue with two items  
public QueueConsensus() {  
   queue = new Queue();  
   queue.enq(WIN);       
   queue.enq(LOSE);  }  
//figure out which thread was first  
 public T decide(T Value) {  
     propose(value); 
     int status = queue.deq();  
     int i = ThreadID.get();  
     if (status == WIN)  
         return proposed[i];    
     else  
         return proposed[1-i];  
     }  
} 



FIFO Queues
• Correctness:


• One thread gets the red ball


• The other thread gets the black ball


• Winner decides on their own value


• Looser can find winner's value in the array



FIFO Queues
• Therefore:


• It is impossible to implement a wait-free two dequeuer 
FIFO queue from atomic registers



FIFO Queues
• FIFO queues cannot solve three-consensus


