Self-Balancing Trees

Thomas Schwarz

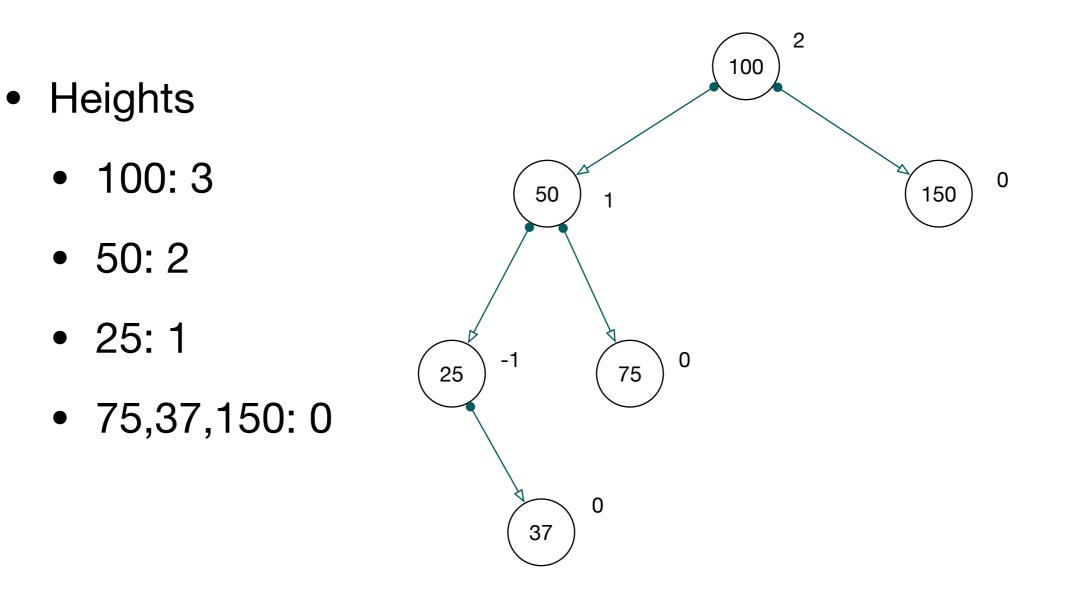
Self-Balancing Trees

- Binary search trees are unbalanced
- Heaps are ideally balanced but do not support searches
- Self-balancing trees:
 - Create search trees that are almost balanced
 - Fundamental Idea:
 - When a tree becomes too unbalanced after insertion or deletion
 - Restructure in a very limited way

Thomas Schwarz

- Georgy Adelson-Velsky & Evgenii Landis 1962
- First self-balancing binary search tree
 - For all nodes: Define a balance factor:
 - Height : Maximum of depth of leaves
 - Height of left sub-tree minus height of right sub-tree
 - Empty tree has height 0

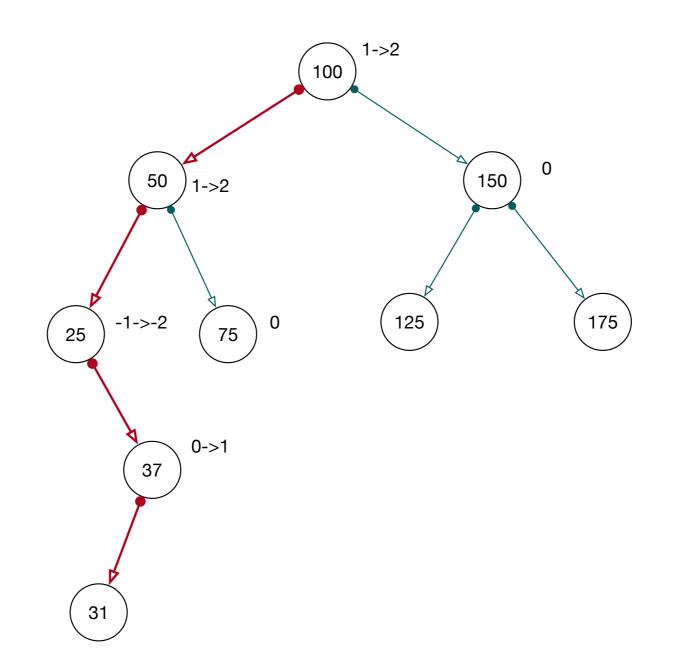
• Example for balancing



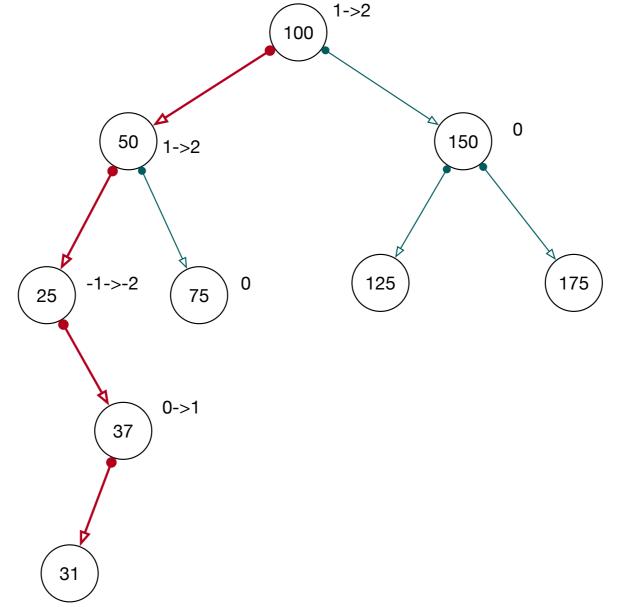
- AVL insight:
 - Keeping all balances equal to zero is impossible
 - But we can keep them in $\{-1,0,1\}$.
 - We do so by special operations on the nodes that have become unbalanced

- AVL insertion:
 - Normal binary search tree insertion
 - Start at the root and compare values
 - Accordingly, move to the left or the right child
 - Insert where the corresponding child does not exist
 - Balancing condition can only be violated along this path

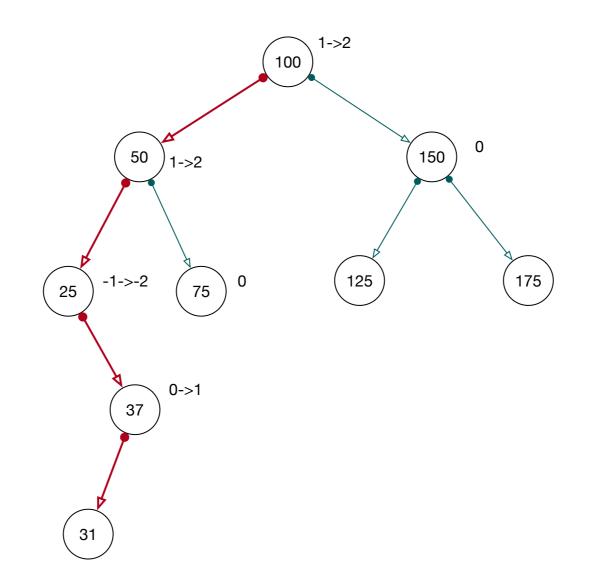
• AVL Insertion: After inserting 37



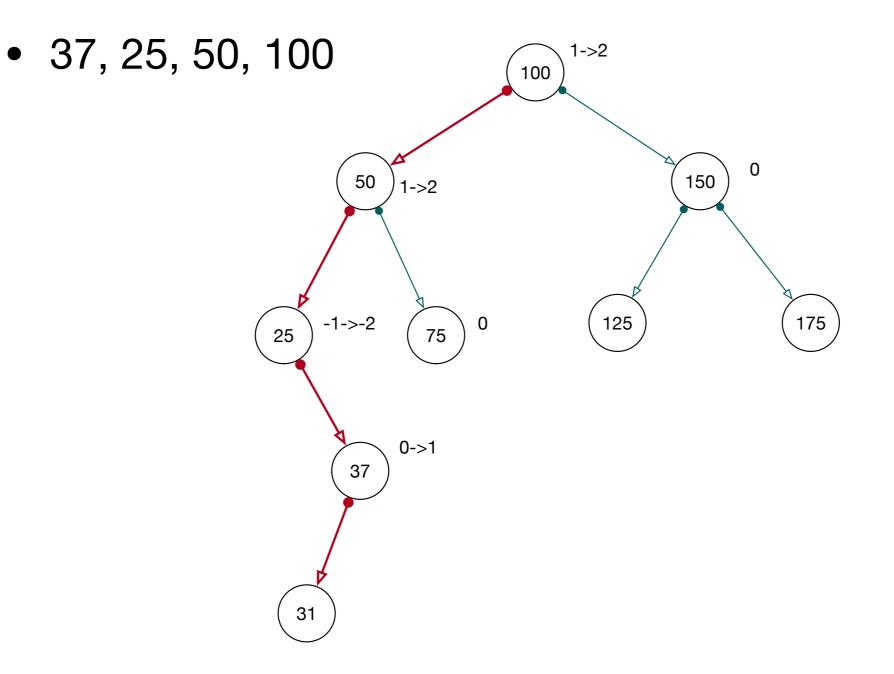
• AVL Insertion: Balances change only on the insertion path



- When pathing through node 100 (or 50):
 - Cannot decide if balance is becomes bad



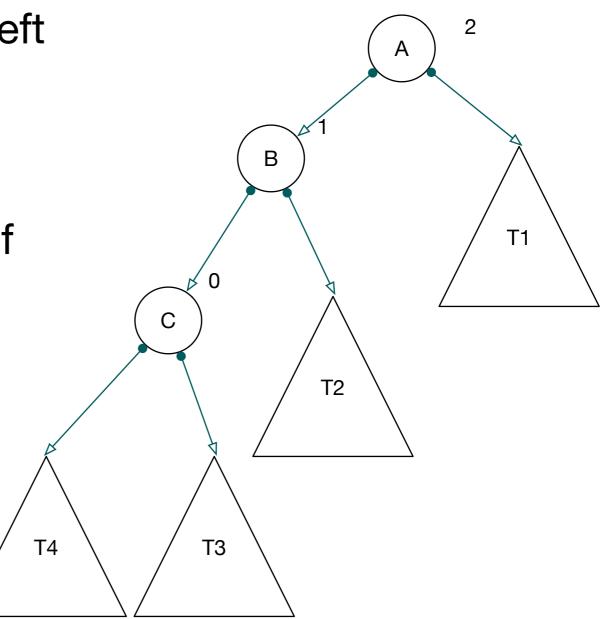
• Therefore: Push nodes on a stack:



- The balancing repair uses "rotations"
 - We take two or three nodes, reorder them and their sub-trees
 - Have to make many case distinctions

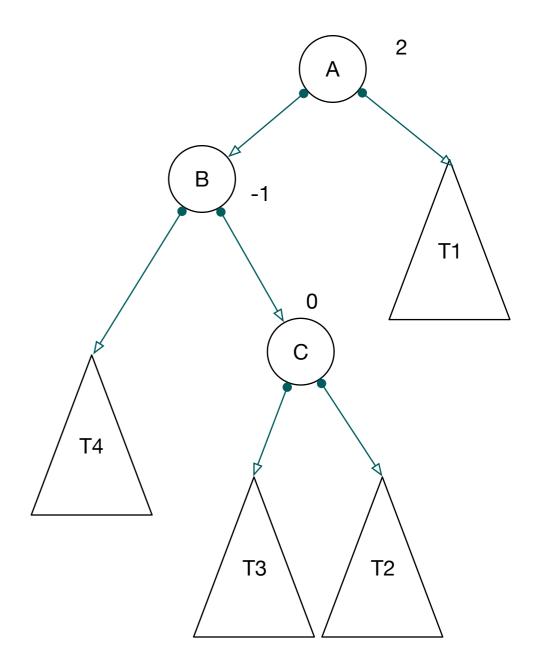
- How can we obtain an unbalance?
 - Only by inserting into a left or right child
 - Assume balance in a node is 1
 - Left sub-tree has larger height
 - Now we insert into the left sub-tree

- Case 1: A has balance 2, because of insertion into left child
 - B has balance of 1
 - C can have a balance of -1, 0, or 1

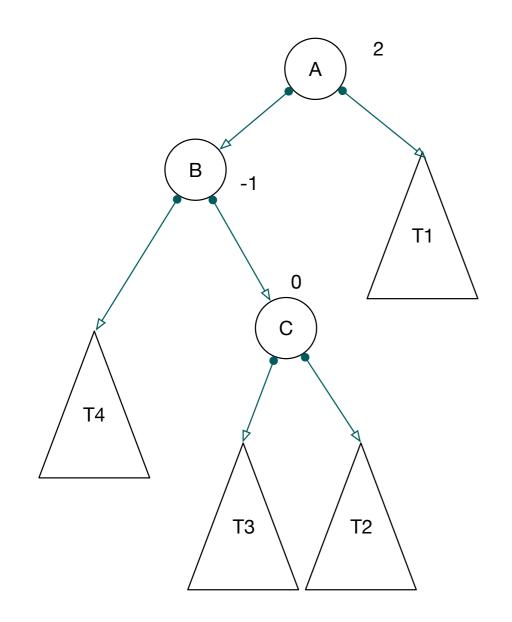


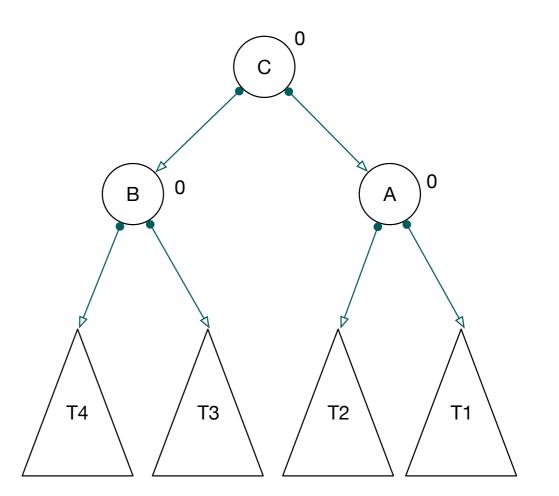
- Right rotation:
- Check that it is well ordered and that balances are correct 2 А 0 В В 0 С 0 T1 А С T2 T4 Т3 T2 T1 Τ4 Т3

- Case 2:
 - Subtree in B has increased height
 - Inserted into subtree rooted in C
 - Balance in C is 0, -1, 1

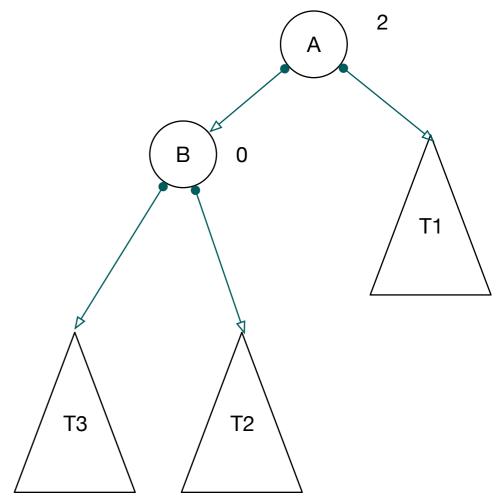


• Double rotate (A with B and B with C)





- Can the sub-tree in B have balance 0?
 - NO!
 - If T3 changed height, height in B would not have changed
 - Either balance in B would have been set to 2 or both T3 and T2 have same height
 - If T2 changed height, height of B would not have changed

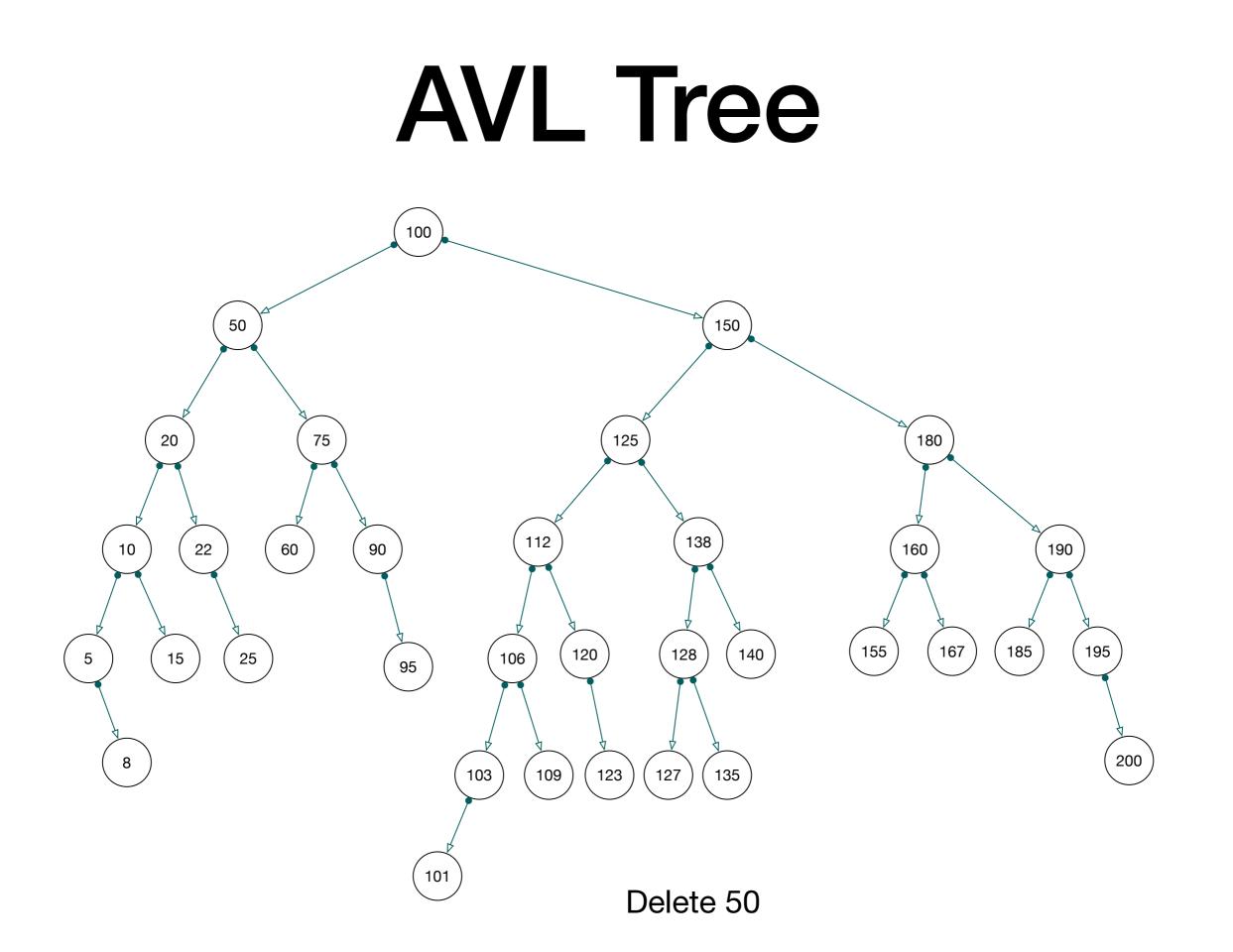


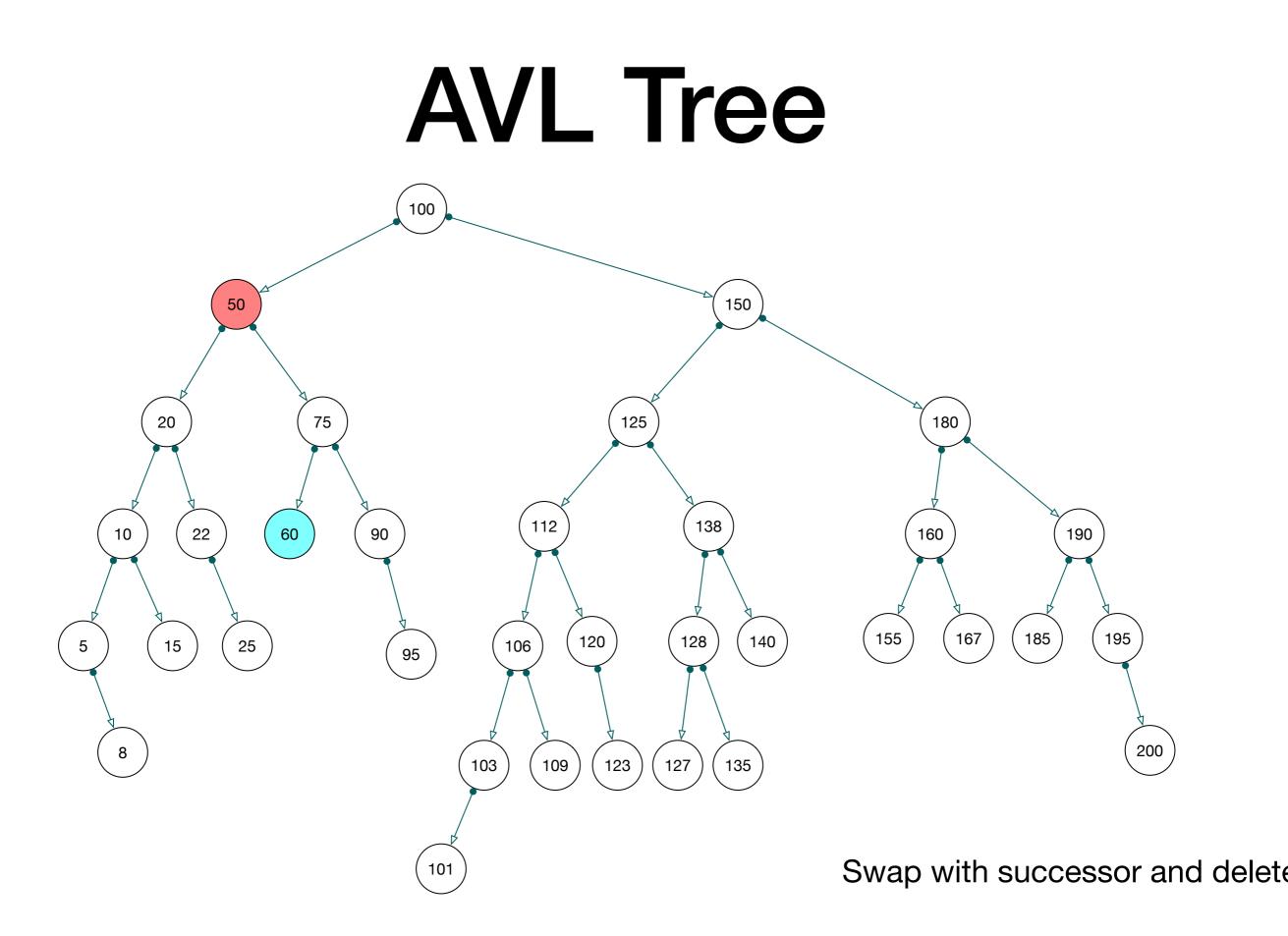
 Analogous operations if the right sub-tree increased in height

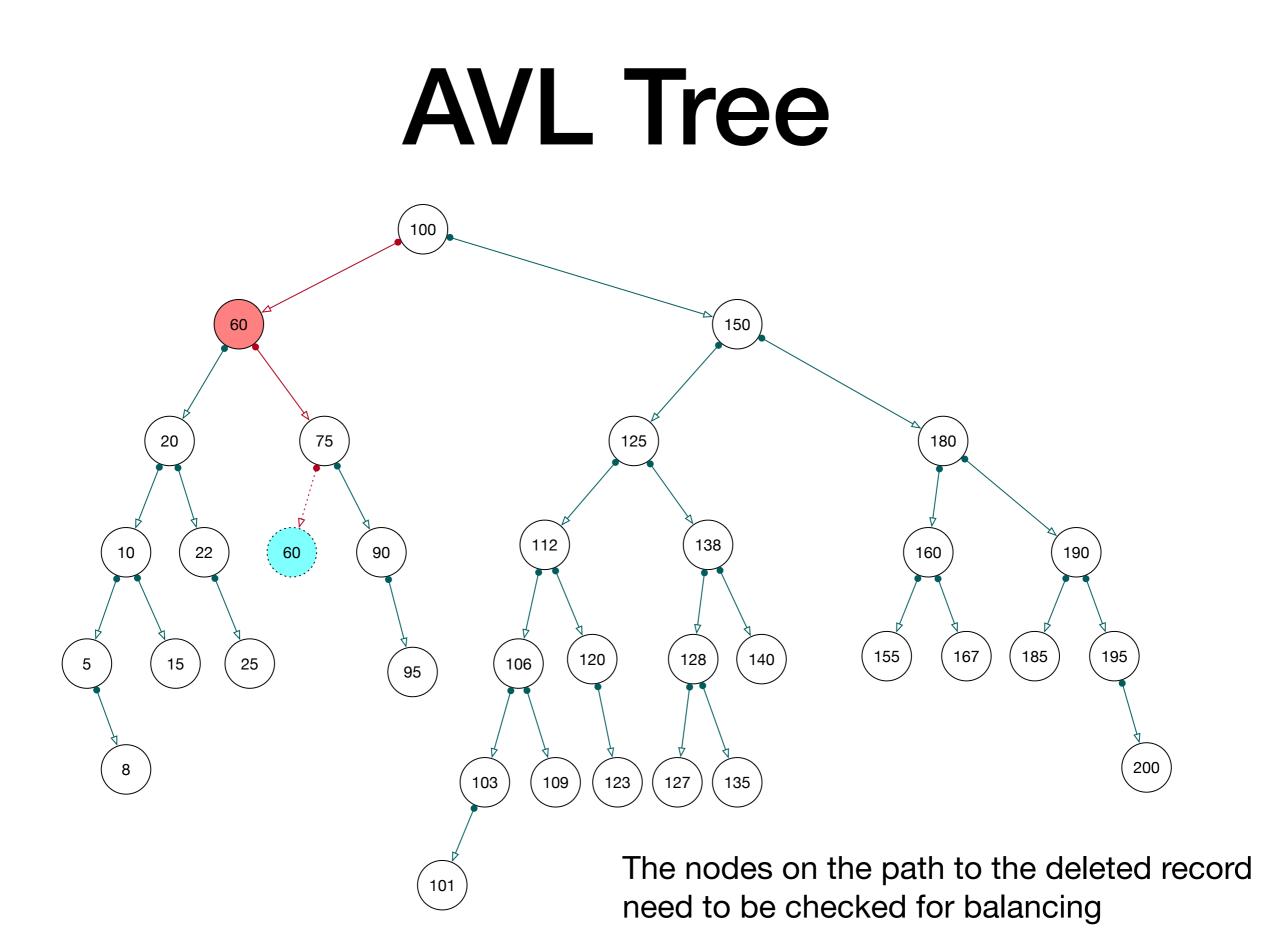
- After insertion and a rotation, the new top node has always balance 0
- The new sub-tree has not changed height compared to before insertion
- This means, only one rotation is ever necessary!

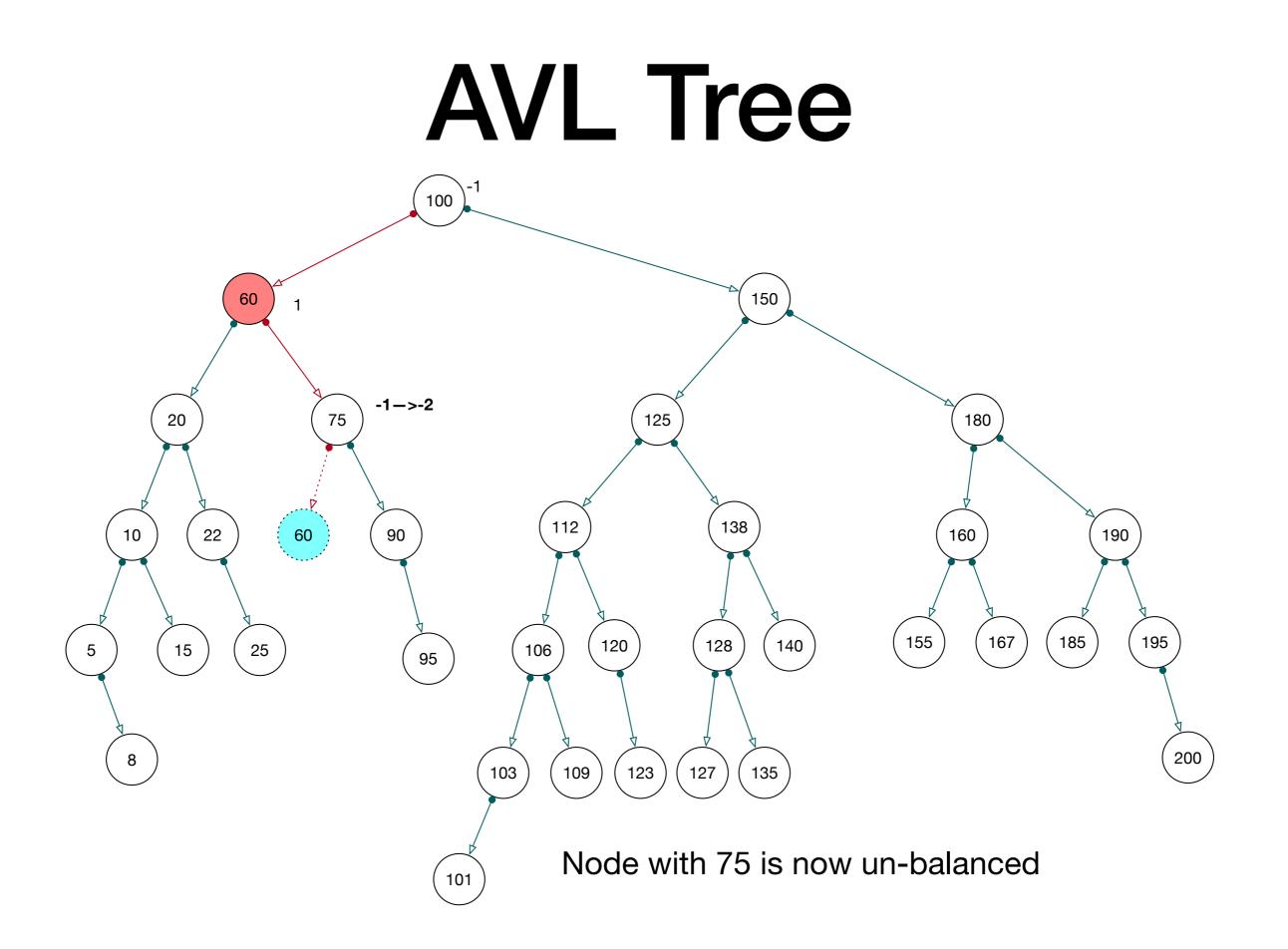
- Deletions:
 - Do the normal deletion from the tree
 - Remainder:
 - We first find the node to be deleted.
 - If the node has no or only one child, we can delete it.
 - Otherwise find the in-order successor
 - Go right than left-left-left-...
 - Swap contents and then delete successor

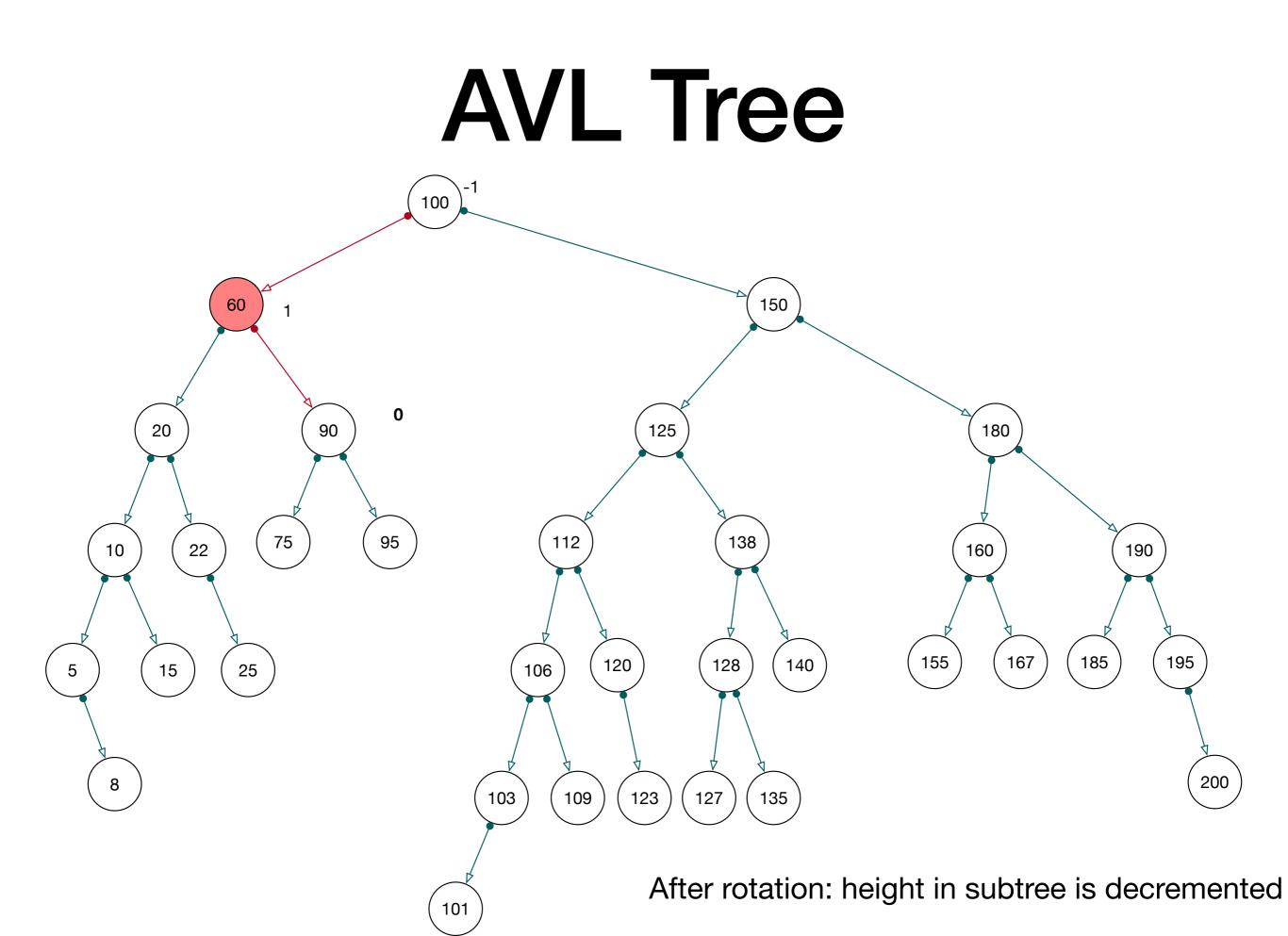
- Once we delete a node:
 - Go back on the path to the node
 - Use the same rotations in order to balance the node
 - But now, balancing can change the height of a subtree before deletion and after deletion cum rotate
 - So, we cannot stop after a single rotate but need to go up all the way to the root to insure balances

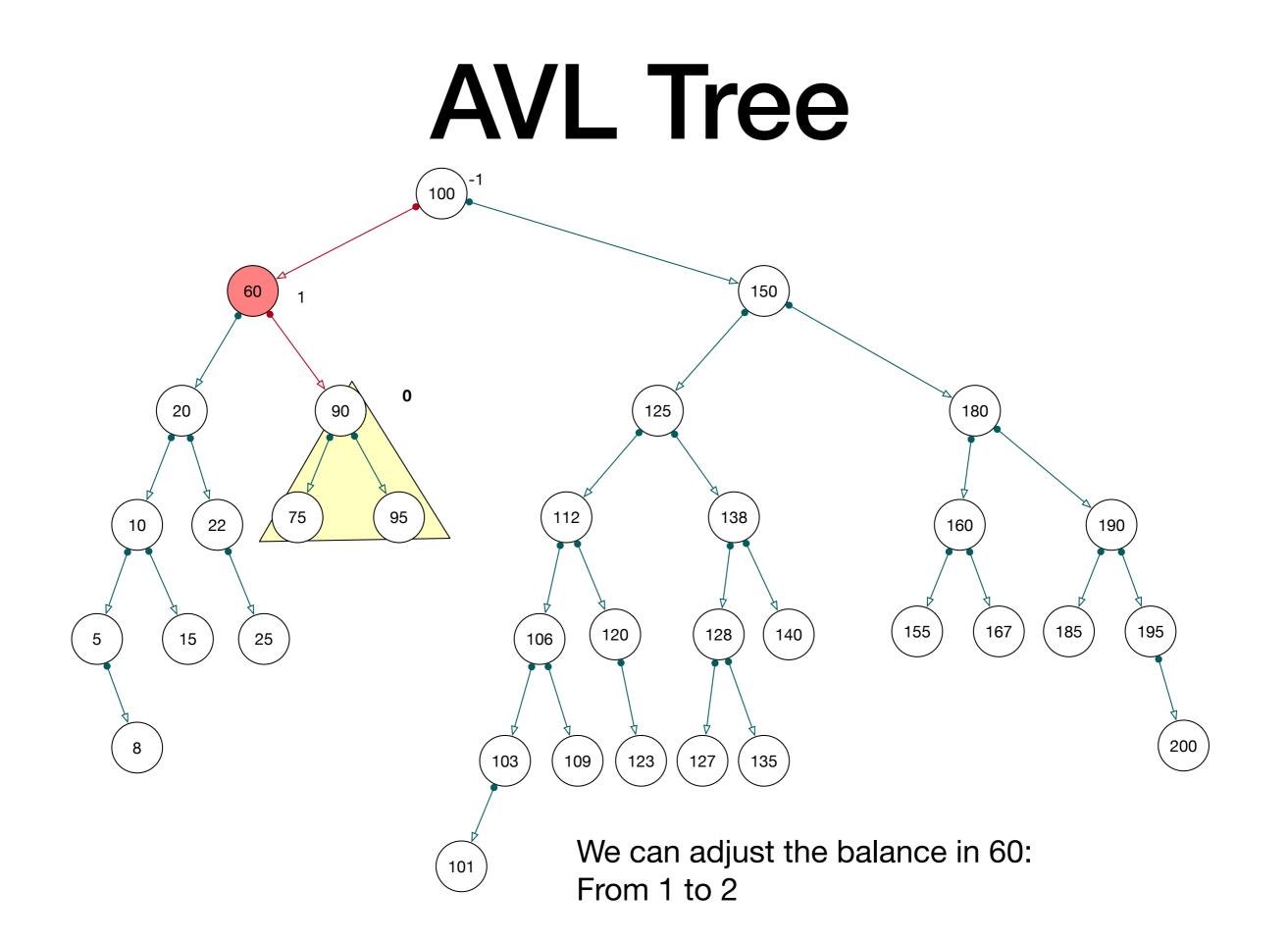


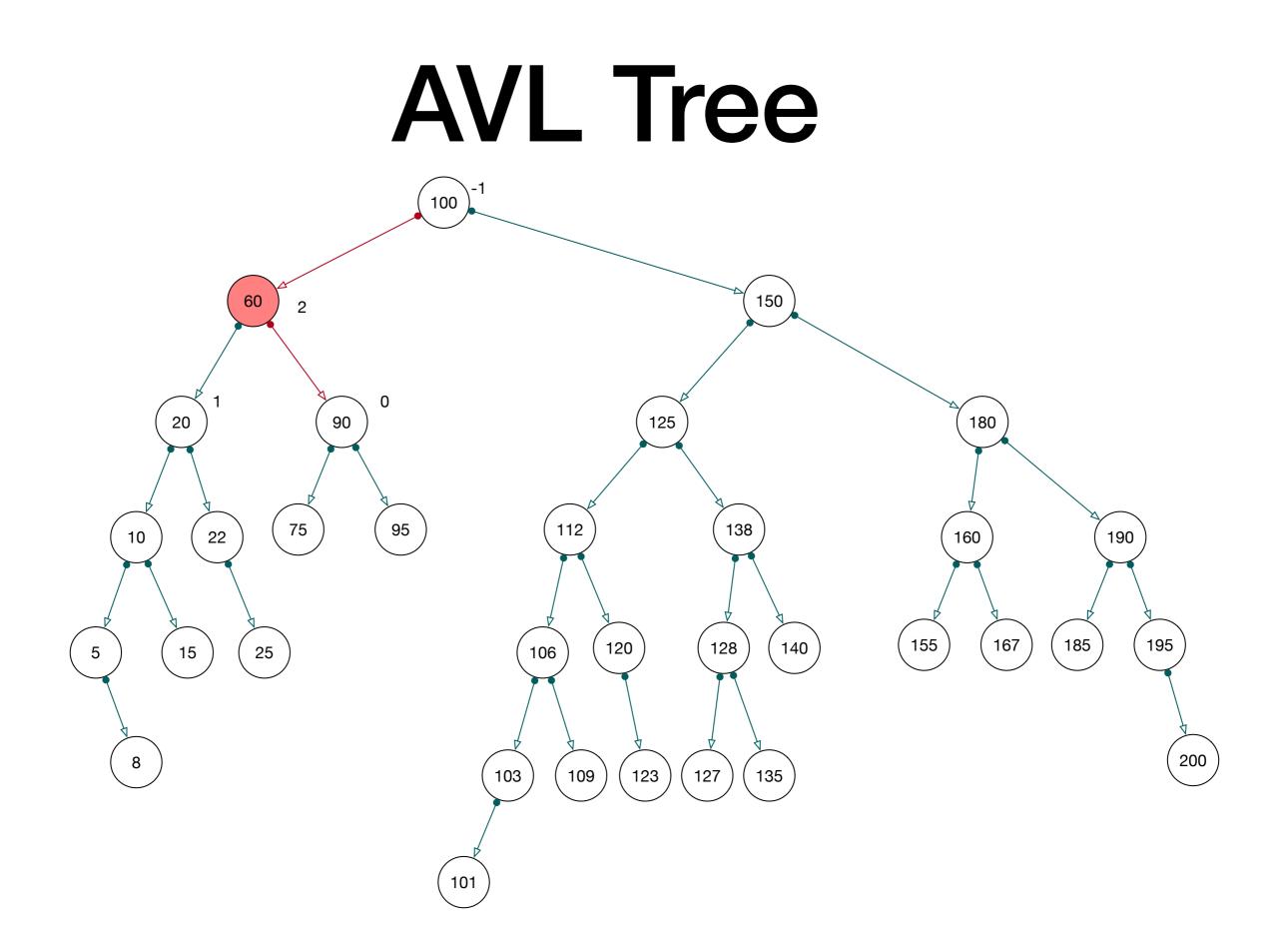


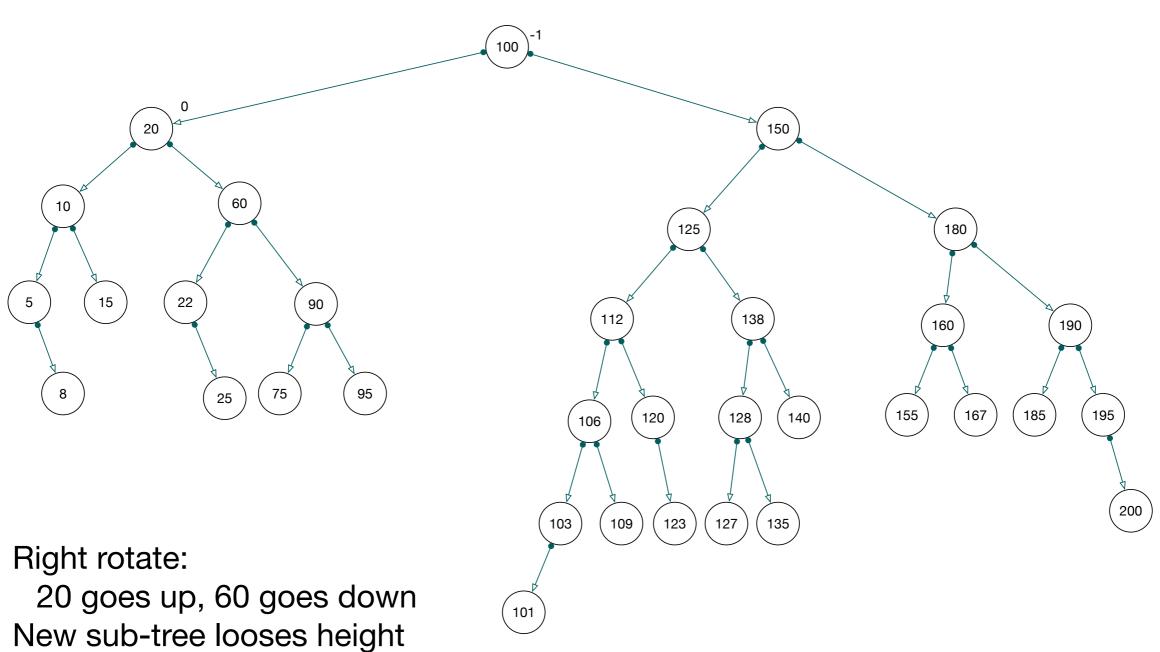




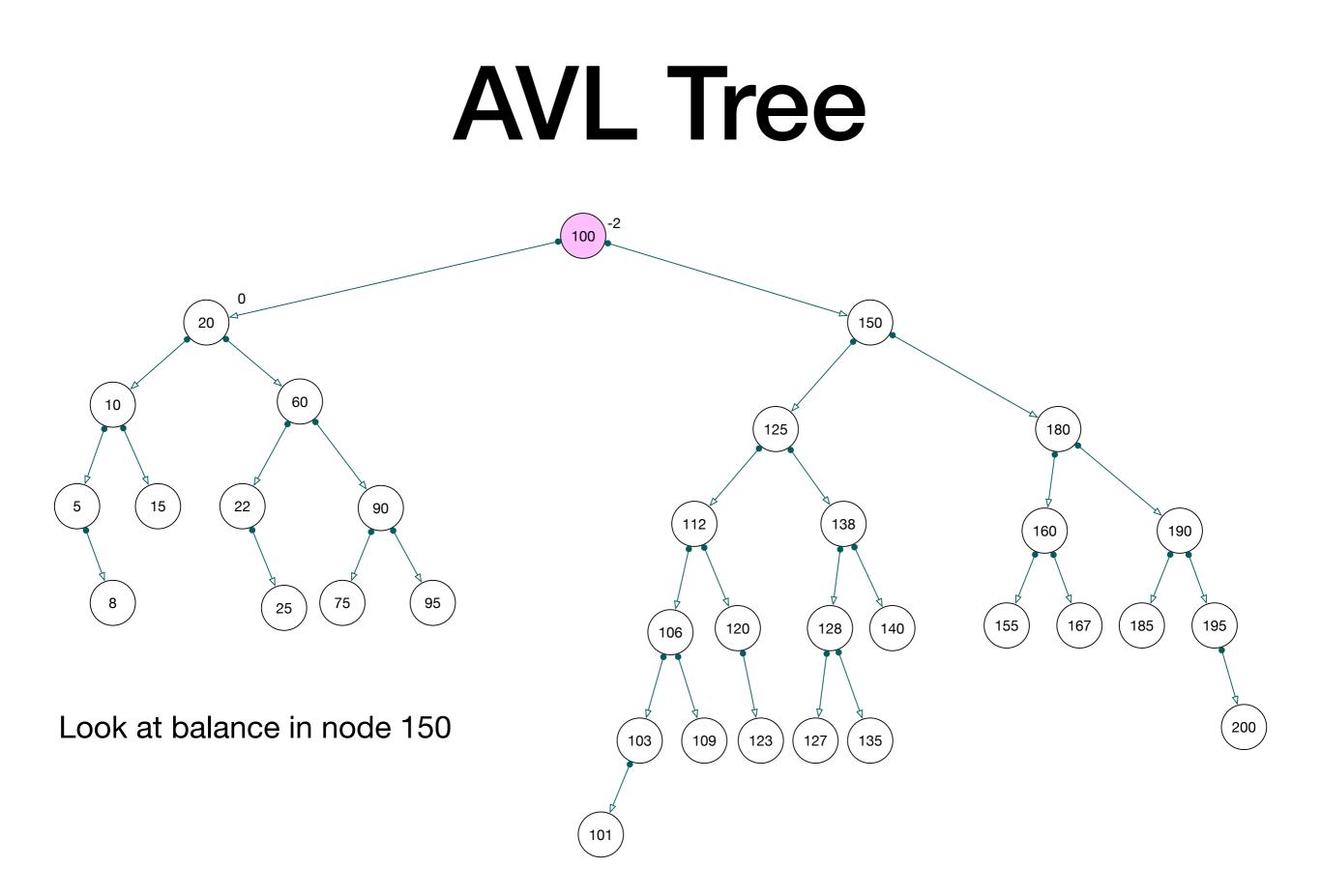


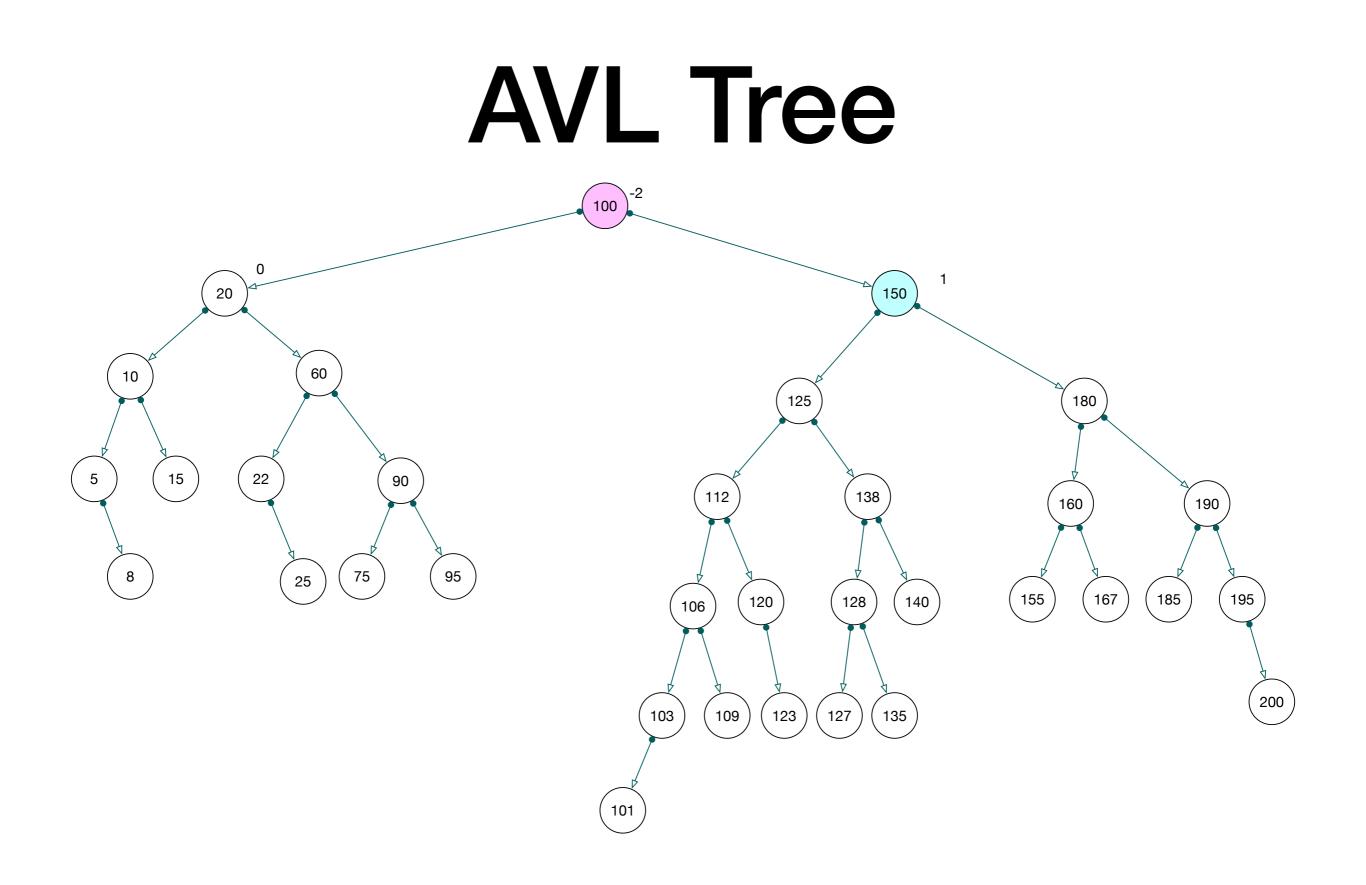


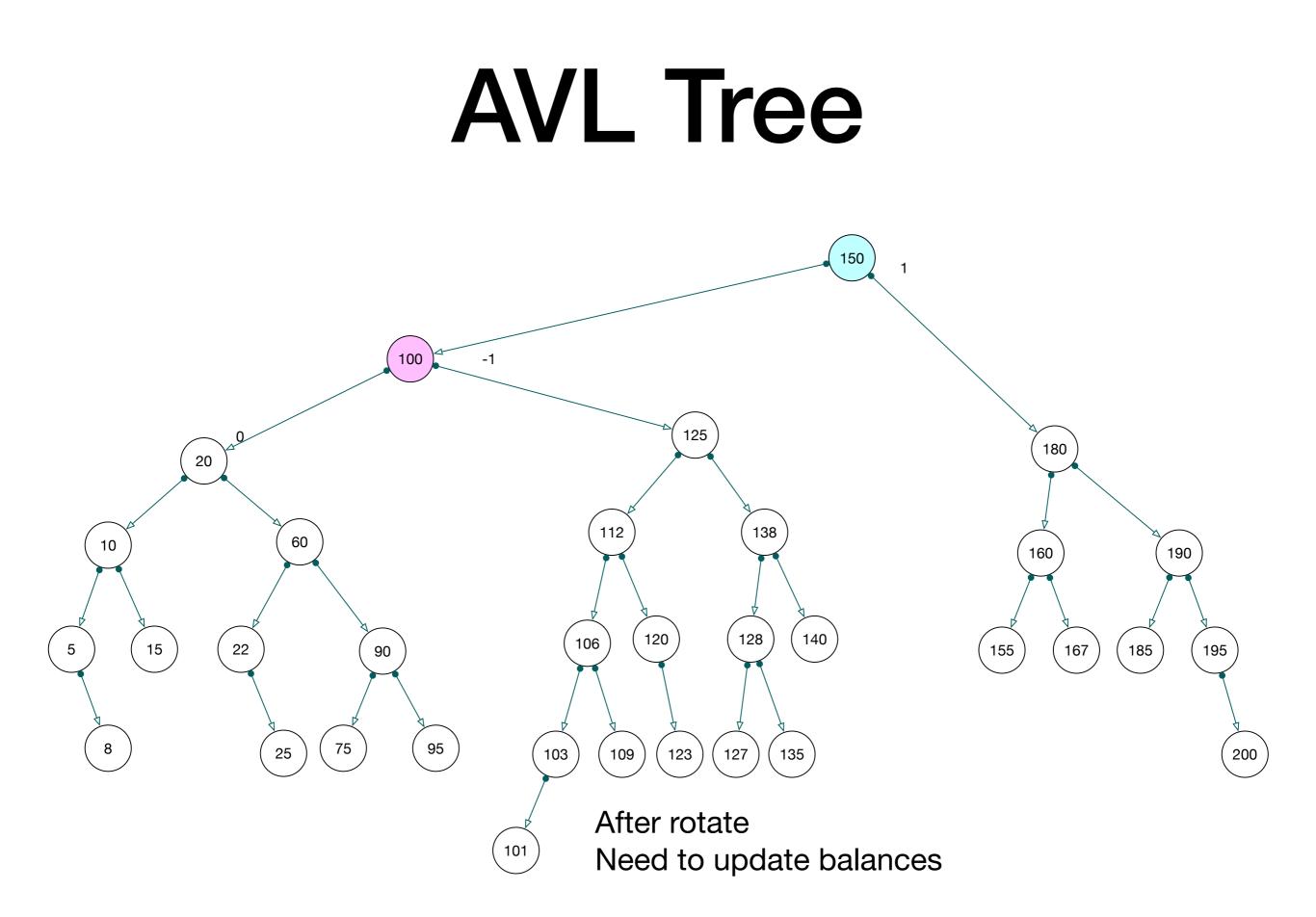




Need to adjust balance in root







- We can update balances based on
 - type of rotation
 - the balances of the trees

- Performance:
 - We now: maximum number of nodes in a tree of height h is
 - $1 + 2^1 + 2^2 + \ldots + 2^h = 2^{h+1} 1$
 - What is the minimum number of nodes in a tree of height h?
 - Call this number n_h

- What is the minimum number of nodes in a tree of height h
 - At the root, one subtree has height one less than the other:

•
$$h_n = 1 + h_{n-1} + h_{n-2}$$

 $h \left\{ \int_{h-1}^{h-1} \int_{h-2}^{h-2} h^{-2} \right\}$

- What is the minimum number of nodes in a tree of height h?
 - For h = 1

•
$$n_0 = 1$$
 $n_1 = 2$

• Recursion:

•
$$n_h = 1 + n_{h-1} + n_{h-2}$$
 $n_0 = 1$ $n_1 = 2$

• Can be solved via the Fibonacci series:

•
$$(n_h + 1) = (n_{h-1} + 1) + (n_{h-2} + 1)$$

• Can be solved exactly or approximately

•
$$n_h \approx 1 + \frac{1}{\sqrt{5}} (\frac{1+\sqrt{5}}{2})^{h+3}$$

- Reversely:
 - Sparsest ALV tree with *n* nodes has height $\approx 1.44 \log_2(n+1) 1.33$
 - Fullest AVL tree with *n* nodes has height $\log_2(n+1) 1$

- Insertion:
 - Proportional to height of tree
- Deletion:
 - Proportional to height of tree