
Self-Balancing Trees
Thomas Schwarz

Self-Balancing Trees
• Binary search trees are unbalanced

• Heaps are ideally balanced but do not support searches

• Self-balancing trees:

• Create search trees that are almost balanced

• Fundamental Idea:

• When a tree becomes too unbalanced after insertion
or deletion

• Restructure in a very limited way

AVL Trees
Thomas Schwarz

AVL Trees
• Georgy Adelson-Velsky & Evgenii Landis 1962

• First self-balancing binary search tree

• For all nodes: Define a balance factor:

• Height : Maximum of depth of leaves

• Height of left sub-tree minus height of right sub-tree

• Empty tree has height 0

AVL Trees
• Example for balancing

• Heights

• 100: 3

• 50: 2

• 25: 1

• 75,37,150: 0

100

50 150

25 75

37

2

0
1

0-1

0

AVL Trees
• AVL insight:

• Keeping all balances equal to zero is impossible

• But we can keep them in .

• We do so by special operations on the nodes that have
become unbalanced

{−1,0,1}

AVL Trees
• AVL insertion:

• Normal binary search tree insertion

• Start at the root and compare values

• Accordingly, move to the left or the right child

• Insert where the corresponding child does not
exist

• Balancing condition can only be violated along this
path

AVL Trees
• AVL Insertion: After inserting 37

100

50 150

25 75

37

1->2

0
1->2

0-1->-2

0->1

31

125 175

AVL Trees
• AVL Insertion: Balances change only on the insertion

path
100

50 150

25 75

37

1->2

0
1->2

0-1->-2

0->1

31

125 175

AVL Trees
• When pathing through node 100 (or 50):

• Cannot decide if balance is becomes bad

100

50 150

25 75

37

1->2

0
1->2

0-1->-2

0->1

31

125 175

AVL Trees
• Therefore: Push nodes on a stack:

• 37, 25, 50, 100 100

50 150

25 75

37

1->2

0
1->2

0-1->-2

0->1

31

125 175

AVL Trees
• The balancing repair uses "rotations"

• We take two or three nodes, reorder them and their
sub-trees

• Have to make many case distinctions

AVL Trees
• How can we obtain an unbalance?

• Only by inserting into a left or right child

• Assume balance in a node is 1

• Left sub-tree has larger height

• Now we insert into the left sub-tree

AVL Trees
• Case 1: A has balance 2,

because of insertion into left
child

• B has balance of 1

• C can have a balance of
-1, 0, or 1

A
2

B

C

1

0

T1

T2

T3T4

AVL Trees
• Right rotation:

• Check that it is well ordered and that balances are
correct A

2

B

C

1

0

T1

T2

T3T4

A

0
B

C

0

0

T1T2T3T4

AVL Trees
• Case 2:

• Subtree in B has increased
height

• Inserted into subtree
rooted in C

• Balance in C is 0, -1, 1

A
2

B

T1

T3

T4

C

T2

0

-1

AVL Trees
• Double rotate (A with B and B with C)

A
2

B

T1

T3

T4

C

T2

0

-1 A

0

B

T1T3T4

C

T2

0 0

AVL Trees
• Can the sub-tree in B have

balance 0?

• NO!

• If T3 changed height, height
in B would not have changed

• Either balance in B would
have been set to 2 or both
T3 and T2 have same
height

• If T2 changed height, height
of B would not have changed

A
2

B

T1

T3 T2

0

AVL Tree
• Analogous operations if the right sub-tree increased in

height

AVL Tree
• After insertion and a rotation, the new top node has

always balance 0

• The new sub-tree has not changed height compared to
before insertion

• This means, only one rotation is ever necessary!

AVL Tree
• Deletions:

• Do the normal deletion from the tree

• Remainder:

• We first find the node to be deleted.

• If the node has no or only one child, we can delete
it.

• Otherwise find the in-order successor

• Go right than left-left-left-...

• Swap contents and then delete successor

AVL Tree
• Once we delete a node:

• Go back on the path to the node

• Use the same rotations in order to balance the node

• But now, balancing can change the height of a subtree
before deletion and after deletion cum rotate

• So, we cannot stop after a single rotate but need to go
up all the way to the root to insure balances

AVL Tree
100

50 150

20 75

10 6022

5

8

15

90

9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

Delete 50

AVL Tree
100

50 150

20 75

10 6022

5

8

15

90

9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

Swap with successor and delete

AVL Tree
100

60 150

20 75

10 6022

5

8

15

90

9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

The nodes on the path to the deleted record

need to be checked for balancing

AVL Tree
100

60 150

20 75

10 6022

5

8

15

90

9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-1

1

-1—>-2

Node with 75 is now un-balanced

AVL Tree
100

60 150

20 90

10 22

5

8

15

75 95

25

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-1

1

0

After rotation: height in subtree is decremented

AVL Tree
100

60 150

20 90

10 22

5

8

15

75 95

25

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-1

1

0

We can adjust the balance in 60:

From 1 to 2

AVL Tree
100

60 150

20 90

10 22

5

8

15

75 95

25

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-1

2

01

AVL Tree
100

150

90

10

225

8

15

75 9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-1

20

60

0

Right rotate:

20 goes up, 60 goes down

New sub-tree looses height

Need to adjust balance in
root

AVL Tree
100

150

90

10

225

8

15

75 9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-2

20

60

0

Look at balance in node 150

AVL Tree
100

150

90

10

225

8

15

75 9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-2

20

60

0 1

AVL Tree

100

90

10

225

8

15

75 9525

125
180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

20

60

0

150

-1

1

After rotate

Need to update balances

AVL Tree
• We can update balances based on

• type of rotation

• the balances of the trees

AVL Tree
• Performance:

• We now: maximum number of nodes in a tree of height
h is

•

• What is the minimum number of nodes in a tree of
height h?

• Call this number

1 + 21 + 22 + … + 2h = 2h+1 − 1

nh

AVL Tree
• What is the minimum number of nodes in a tree of

height h

• At the root, one subtree has height one less than the
other:

• hn = 1 + hn−1 + hn−2{h }h-1 } h-2

AVL Tree
• What is the minimum number of nodes in a tree of height

?

• For

•

h

h = 1

n0 = 1 n1 = 2

AVL Tree
• Recursion:

•

• Can be solved via the Fibonacci series:

•

• Can be solved exactly or approximately

•

nh = 1 + nh−1 + nh−2 n0 = 1 n1 = 2

(nh + 1) = (nh−1 + 1) + (nh−2 + 1)

nh ≈ 1 +
1

5
(
1 + 5

2
)h+3

AVL Tree
• Reversely:

• Sparsest ALV tree with nodes has height

• Fullest AVL tree with n nodes has height

n
≈ 1.44 log2(n + 1) − 1.33

log2(n + 1) − 1

AVL Tree
• Insertion:

• Proportional to height of tree

• Deletion:

• Proportional to height of tree

