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Self-Balancing Trees
• Binary search trees are unbalanced


• Heaps are ideally balanced but do not support searches


• Self-balancing trees:


• Create search trees that are almost balanced


• Fundamental Idea:


• When a tree becomes too unbalanced after insertion 
or deletion


• Restructure in a very limited way
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AVL Trees
• Georgy Adelson-Velsky & Evgenii Landis 1962


• First self-balancing binary search tree


• For all nodes: Define a balance factor:


• Height : Maximum of depth of leaves


• Height of left sub-tree minus height of right sub-tree


• Empty tree has height 0



AVL Trees
• Example for balancing


• Heights


• 100: 3


• 50: 2


• 25: 1


• 75,37,150: 0
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AVL Trees
• AVL insight:


• Keeping all balances equal to zero is impossible


• But we can keep them in .


• We do so by special operations on the nodes that have 
become unbalanced

{−1,0,1}



AVL Trees
• AVL insertion:


• Normal binary search tree insertion


• Start at the root and compare values


• Accordingly, move to the left or the right child


• Insert where the corresponding child does not 
exist


• Balancing condition can only be violated along this 
path



AVL Trees
• AVL Insertion:  After inserting 37
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AVL Trees
• AVL Insertion:  Balances change only on the insertion 

path
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AVL Trees
• When pathing through node 100 (or 50):


• Cannot decide if balance is becomes bad
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AVL Trees
• Therefore: Push nodes on a stack:


• 37, 25, 50, 100 100
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AVL Trees
• The balancing repair uses "rotations"


• We take two or three nodes, reorder them and their 
sub-trees


• Have to make many case distinctions



AVL Trees
• How can we obtain an unbalance?


• Only by inserting into a left or right child


• Assume balance in a node is 1


• Left sub-tree has larger height


• Now we insert into the left sub-tree



AVL Trees
• Case 1: A has balance 2, 

because of insertion into left 
child


• B has balance of 1


• C can have a balance of 
-1, 0, or 1
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AVL Trees
• Right rotation: 


• Check that it is well ordered and that balances are 
correct A
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AVL Trees
• Case 2: 


• Subtree in B has increased 
height


• Inserted into subtree 
rooted in C


• Balance in C is 0, -1, 1
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AVL Trees
• Double rotate (A with B and B with C)
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AVL Trees
• Can the sub-tree in B have 

balance 0?


• NO!


• If T3 changed height, height 
in B would not have changed


• Either balance in B would 
have been set to 2 or both 
T3 and T2 have same 
height


• If T2 changed height, height 
of B would not have changed
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AVL Tree
• Analogous operations if the right sub-tree increased in 

height



AVL Tree
• After insertion and a rotation, the new top node has 

always balance 0


• The new sub-tree has not changed height compared to 
before insertion


• This means, only one rotation is ever necessary!



AVL Tree
• Deletions:


• Do the normal deletion from the tree


• Remainder:


• We first find the node to be deleted.


• If the node has no or only one child, we can delete 
it.


• Otherwise find the in-order successor


• Go right than left-left-left-...


• Swap contents and then delete successor



AVL Tree
• Once we delete a node:


• Go back on the path to the node


• Use the same rotations in order to balance the node


• But now, balancing can change the height of a subtree 
before deletion and after deletion cum rotate


• So, we cannot stop after a single rotate but need to go 
up all the way to the root to insure balances



AVL Tree
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AVL Tree
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AVL Tree
100

60 150

20 75

10 6022

5

8

15

90

9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

The nodes on the path to the deleted record

need to be checked for balancing



AVL Tree
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AVL Tree
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AVL Tree
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AVL Tree
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AVL Tree
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AVL Tree
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AVL Tree
100

150

90

10

225

8

15

75 9525

125 180

112

106

103

101

138

109

120

123

128

127 135

140

160

155 167

190

185 195

200

-2

20

60

0 1



AVL Tree
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AVL Tree
• We can update balances based on


• type of rotation


• the balances of the trees



AVL Tree
• Performance:


• We now: maximum number of nodes in a tree of height 
h is 


• 


• What is the minimum number of nodes in a tree of 
height h?


• Call this number 

1 + 21 + 22 + … + 2h = 2h+1 − 1

nh



AVL Tree
• What is the minimum number of nodes in a tree of 

height h 

• At the root, one subtree has height one less than the 
other:


•  hn = 1 + hn−1 + hn−2{h }h-1 } h-2



AVL Tree
• What is the minimum number of nodes in a tree of height 

?


• For 


•   

h

h = 1

n0 = 1 n1 = 2



AVL Tree
• Recursion:


• 


• Can be solved via the Fibonacci series:


• 


• Can be solved exactly or approximately


•

nh = 1 + nh−1 + nh−2 n0 = 1 n1 = 2

(nh + 1) = (nh−1 + 1) + (nh−2 + 1)

nh ≈ 1 +
1

5
(
1 + 5

2
)h+3



AVL Tree
• Reversely:


• Sparsest ALV tree with  nodes has height 



• Fullest AVL tree with n nodes has height 

n
≈ 1.44 log2(n + 1) − 1.33

log2(n + 1) − 1



AVL Tree
• Insertion:


• Proportional to height of tree


• Deletion:


• Proportional to height of tree


