Self-Balancing Trees

Thomas Schwarz

Self-Balancing Trees

 Binary search trees are unbalanced
» Heaps are ideally balanced but do not support searches
e Self-balancing trees:

 Create search trees that are almost balanced

e Fundamental Idea:

e \WWhen a tree becomes too unbalanced after insertion
or deletion

 Restructure in a very limited way

AVL Trees

Thomas Schwarz

AVL Trees

e Georgy Adelson-Velsky & Evgenii Landis 1962
e First self-balancing binary search tree
* For all nodes: Define a balance factor:
e Height : Maximum of depth of leaves
 Height of left sub-tree minus height of right sub-tree
e Empty tree has height O

AVL Trees

e Example for balancing

e Heights
e 100: 3
e 50:2
e 25:1
e 75,37,150: 0

AVL Trees

* AVL insight:
 Keeping all balances equal to zero is impossible
e But we can keep them in {—1,0,1}.

* We do so by special operations on the nodes that have
become unbalanced

AVL Trees

 AVL insertion:
* Normal binary search tree insertion
e Start at the root and compare values
e Accordingly, move to the left or the right child

* |nsert where the corresponding child does not
exist

e Balancing condition can only be violated along this
path

AVL Trees

 AVL Insertion: After inserting 37

1->2

AVL Trees

* AVL Insertion: Balances change only on the insertion
path

1->2

AVL Trees

 When pathing through node 100 (or 50):

e Cannot decide if balance is becomes bad

/\ A 0
1->2
s 4 4 X
- _>_

AVL Trees

e Therefore: Push nodes on a stack:

e 37,25,50, 100

1->2

AVL Trees

* The balancing repair uses "rotations”

e We take two or three nodes, reorder them and their
sub-trees

* Have to make many case distinctions

AVL Trees

e How can we obtain an unbalance?
 Only by inserting into a left or right child
* Assume balance in a node is 1
e |eft sub-tree has larger height

e Now we Insert into the left sub-tree

AVL Trees

e Case 1: A has balance 2,

because of insertion into left
child

e B has balance of 1

e C can have a balance of
-1, 0, or 1

T1

T4 T3

AVL Trees

e Right rotation:

e Check that it is well ordered and that balances are

Correc’i/@{
WA °

AVL Trees

e Case 2:

e Subtree in B has increased
height

e |Inserted into subtree
rooted in C

e BalanceinCisO, -1, 1 ' ‘
A

AVL Trees

 Double rotate (A with B and B with C)

AVL Trees

e (Can the sub-tree in B have
balance 07

 NO!

e |f T3 changed height, height
iIn B would not have changed

e Either balance in B would
have been set to 2 or both
T3 and T2 have same
height

e |If T2 changed height, height
of B would not have changed

T3 12

AVL Tree

* Analogous operations if the right sub-tree increased in
height

AVL Tree

e After insertion and a rotation, the new top node has
always balance O

* The new sub-tree has not changed height compared to
before insertion

 This means, only one rotation is ever necessary!

AVL Tree

* Deletions:
* Do the normal deletion from the tree
* Remainder:
* We first find the node to be deleted.

* |f the node has no or only one child, we can delete
it.

e (Otherwise find the in-order successor
 Go right than left-left-left-...

e Swap contents and then delete successor

AVL Tree

e Once we delete a node:

Go back on the path to the node
Use the same rotations in order to balance the node

But now, balancing can change the height of a subtree
before deletion and after deletion cum rotate

S0, we cannot stop after a single rotate but need to go
up all the way to the root to insure balances

AVL Tree

AVL Tree

Swap with successor and delete

AVL Tree

N
ﬁ@<36@9
ofclelolo e
o e s o iy

AVL Tree

AVL Tree

AVL Tree
s

‘@

1§

() (=) () () (=

@ We can adjust the balance in 60:

From 1 to 2

Q Q 0 E /X N i
N [N V
2\

% \

AVL Tree

AVL Tree

-1

7
C? G%@

| =@
Right rotate:
(=)

20 goes up, 60 goes down
New sub-tree looses height
Need to adjust balance in
root

AVL Tree

© OO
j

MOROIO ©
Look at balance in node 150 @ @ @

AVL Tree

AVL Tree

After rotate
Need to update balances

AVL Tree

* \We can update balances based on
e type of rotation

e the balances of the trees

AVL Tree

e Performance:

e We now: maximum number of nodes in a tree of height
his

o 14+2V 4224 . 42h=0m1_1

e \What is the minimum number of nodes in a tree of
height h?

o Call this number n,

AVL Tree

e \What is the minimum number of nodes in a tree of
height h

e At the root, one subtree has height one less than the

other:
//K\A 1
h h-1 /\ >h'2
J

e hy=1+h

hn—2

AVL Tree

e What is the minimum number of nodes in a tree of height

h?

e Forh =1 j

AVL Tree

e Recursion:
e (Can be solved via the Fibonacci series:
° (nh —+ 1) — (nh_l + 1) + (nh_2 -+ 1)
e Can be solved exactly or approximately
L ! +4/5 .
V52

n,~ 1+

AVL Tree

* Reversely:

e Sparsest ALV tree with n nodes has height
~ 1.441log,(n+ 1) — 1.33

* Fullest AVL tree with n nodes has height
log,(n+1)—1

AVL Tree

* |nsertion:
* Proportional to height of tree
e Deletion:

* Proportional to height of tree

