
Hashing
Thomas Schwarz, SJ

Dictionary
• ADS for key-value pairs

• CRUD operations:

• Create

• Read

• Update

• Delete

• Does not assume nor support ordering of keys

Dictionary
• Example:

• A compiler takes a variable name (= key)

• and associates various data such as type etc. (value)

Direct Addressing
• If the key space is small

• Use Direct Addressing

• Array for all possible key values with pointers to
values

• Null-pointers (None) if key not in the dictionary

Direct Addressing

Universe of Keys

Actual keys

1

0

2

3

4

5

6

7
8

9

10

11
12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Associated Values
Direct Mapping Array

Direct Addressing
• Direct addressing:

• Number of actual keys needs to be close to the number
of possible keys

• Keys need to be convertible to indices

Direct Addressing
• Direct addressing:

• Number of actual keys needs to be close to the number
of possible keys

• Keys need to be convertible to indices

Direct Addressing
• Variants: The value can be stored directly in the array

• E.g.: When the value has fixed length

Hash Tables
• If the universe of keys is large

• Table with entries is too big

• And most of its entries would be Nones

• Use a hash function

•

• with few collisions

• A collision are two elements of that map to the same
number

•

U

|U |

h : U ⟶ {0,1,…, m − 1}

U

u1, u2 ∈ U, u1 ≠ u2, h(u1) = h(u2)

Hash Tables

Universe of Keys

Actual keys

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hash Table

k1

k2

k3

k4

k5

k1 value1

k2 value2

k3 value3

k4 value4

k5 value5

h

h

h

h

h

Hash Tables
• Collisions happen and they must be resolved

• Chaining:

• create a linked list of key-value pairs

Hash Tables
Universe of Keys

Actual keys

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hash Table

k1

k2

k3

k4

k5

k1 value1

k2 value2

k3 value3

k4 value4

k5 value5

h

h

h

h

h

k6

k7

k8

h
k6 value6

k7 value7
hh k8 value8

Hash Tables
• Bucketing

• A linked list is not necessarily the best way to store
key-value pairs

• If the hash table is large, the data will be stored in the
pages of a storage system

• Can have buckets with a given maximum capacity

• However, we might need to have overflow buckets

Hash Tables
• A potential design for buckets:

• Each bucket has a next pointer to an overflow area

• And in this case a fixed capacity to store key-value
pairs

• Here: a full bucket with one overflow record

k145 value145

metadata

k87 value87

k220 value220

next

k10 value10

metadata

- -

- -

next

Performance of Hashing
with Chaining

• Vocabulary:

• A hash table has
 slots

• with records.

• Its load factor is
.

T
m

n

α = n/m

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Hash Table T

k1 value1

k2 value2

k3 value3

k4 value4

k5 value5

k6 value6

k7 value7 k8 value8

 = 16
 = 8

m
n

α =
1
2

Performance of Hashing
with Chaining

• Worst performance:

• The hash function maps all record keys to the same slot

• Finding a key-value pair then takes

• accesses to a key-value pair if the record is not
there

• On average accesses if the record is there

• because

n

(n + 1)/2

(1 + 2 + … + n)/n =
(n + 1)n

2n
=

n + 1
2

Performance of Hashing
with Chaining

• Why would this happen:

• The hash function is bad

• This happens if people make up their own hash functions

• The data is cooked

• "Adversary model": Evaluate algorithms and ADS by
finding the worst possible instance of data

• Someone controls the input and is attacking your system

• Bad luck

• Murphy's law: If something bad can happen, it will happen
eventually

Performance of Hashing
with Chaining

• Average performance analysis:

• Assume that a hash function is equally likely to send a
record to a certain slot

• This can be de facto guaranteed with cryptographically
secure hash functions (see below)

Performance of Hashing
with Chaining

• Call the number of records (= key-value pairs) that are hashed to
slot ()

• Then

• Expected number of records accessed for an unsuccessful
search:

• Equal to the length of the chain, i.e. to

• On average:

• Total expected work: Need to calculate the hash function etc.

• (the one because can be zero.)

ni
i i ∈ {0,1,…, n − 1}

n0 + n1 + …nm−2 + nm−1 = n

ni

n0 + n1 + n2 + … + nm−2 + nm−1

m
=

n
m

= α

Θ(1 + α) α

Performance of Hashing
with Chaining

• Successful search:

• In a list of records, we access on average records

• If each record were in a random slot:

• Average number of records accessed during a successful search is
therefore

•

•

• =

r
r + 1

2

n0 + 1
2 + n1 + 1

2 + …
nm−2+1

2 +
nm−1 + 1

2

m

=
n0 + n1 + … + nm−2 + nm−1 + m

2m
n + m

2m
=

1
2

α + 1 = Θ(1 + α)

Performance of Hashing
with Chaining

• Successful search:

• But records are more likely to be in full slots

• Therefore, this analysis is false

• Probability that two keys are in the same slot is

• A search for a record visits exactly those records
that:

• Are in the same slot

• And have been inserted before

1
m

Performance of Hashing
with Chaining

• Order all records by
insertion

• Then search for touches all records with

• But only if they are inserted into the same slot

• which happens with probability

• Therefore:

• Search for record looks at records plus itself

[k0, v0], [k1, v1], …, [kn−1, vn−1]

ki k0, k1, …, ki−1

1
m

i
i
m

Performance of Hashing
with Chaining

• Search for record looks at records plus itself

• On average:

 =

i
i
m

1
n (

n−1

∑
i=0

(
i
m

+ 1))
= 1 +

1
nm

n−1

∑
i=0

i

= 1 +
n(n − 1)

2nm

= 1 +
n

2m
−

1
2nm

1 +
1
2

α −
1

2nm

Hash Functions
• A good hash function:

• each key is equally likely to hash to any of the slots

• independently where any other keys are hashed to

• Usually cannot be ascertained:

• We do not know enough about the distribution of keys

m

Hash Functions
• Example:

• Assume that keys are random number between 0 and 1

• Good hash function is:

• h(k) = ⌊k ⋅ m⌋

import random

m=5

def hash(u):
 return int(u*m)

Hash Functions
• Interpreting keys as natural numbers

• Many hash functions work on natural numbers

• Need to translate to integers:

• Example:

• For strings:

• convert encoding to numerical representation
def str_to_int(astring):
 result = 0
 for letter in astring:
 result = ord(letter) + 256*result
 return result

Hash Functions
• Example

def str_to_int(astring):
 result = 0
 for letter in astring:
 result = ord(letter) + 256*result
 return result

‘a

'0x61' '0x62’ '0x63’

b c’

’97’ ’98’ ’99’

97*256*256 + 98*256 + 99

Hash Functions
• Caution:

• The transformation and the hash function combination
can have weird effects

• E.g. A string obtained by swapping to letters might
have the same hash

• Which could be useful or could be very bad

Hash Functions
• Simple hash functions:

• Division method:

• Convert keys to integers

• Then hash to the integer obtained as remainder by
division with m

def hash(key):
return key_2_int(key)%m

Hash Functions
• Division method:

• If is a power of 2:

• Hash is the last bits

• Which is usually bad

• If and keys are strings:

• swapping two letters does not change the hash value

• Better experience:

• Primes close to a power of 2

m

m = 2p − 1

Hash Functions

• Key is a l bit value

• Use a constant of size l
bits

• Multiply: , a 2l bit value

• Select hash as upper bits
of the lower half

k

s

ks

k

sx

rhigh rlow}

h(k)

• Multiplication Method:

Hash Functions
• How to select :

• D. Knuth proposes to use the first l bits of

•

s

5 − 1
2

Hash Functions
• Example:

• 32-bit keys

•

• Extract 14 bits:

• Shift right by 18 (14+18 = 32)

• Then mask with 14 ones: b11 1111 1111 1111 =
0x3fff

s = ⌊(5 − 1)/2⌋

s = int((math.sqrt(5)-1)/2 * 2**32)
def hash(x):
 return (s*x >> 18) & 0x3fff

Hash Functions
• Cryptographically secure hash functions:

• Hash functions have applications in security

• Instead of storing a password, store the hash of a
password together with the user name

• "user_name", h(pass_word)

• When user enters the password:

• System calculates the hash of the entered
password

• And compares with the hash

Hash Functions
• Cryptographically secure hash functions:

• Generate long hashes (224 - 512 bits)

• If an attacker steals the user database:

• Attacker has only the hash, but not the password

• Cryptographically secure hash function :

• Impossible to calculate from

h

x h(x)

Hash Functions
• This is why you should not choose words in a language

as password: "peaches"

• Attacker can try out

• All words in English (~200,000),

• All words in Hindi ShabdSagar (~93,000 - 250,000)

Hash Functions
• Secure hash functions are the result of competitions and

public scrutiny

• Provide pre-image resistance:

• Impossible to find from

• Provide collision resistance:

• Impossible to find and such that

• Certified by NIST and similar institutions

• SHA-3 (NIST)

• Blake3 (latest considered to be safe)

x h(x)

x y h(x) = h(y)

Hash Functions
• Should you use cryptographically secure hash functions?

• If your data cannot be generated by an adversary

• If you can live with small inadequacies

• Not necessary

• Otherwise:

• Extract as many bits as needed from a
cryptographically secure hash function

• Pay the performance costs

Open Addressing Hashing
• Idea: Records (= key-value pair) are stored in the hash

table itself

• Collisions are resolved by storing a record elsewhere

Open Addressing Hashing
• Linear probing:

• If a slot is occupied, go to the next slot

Open Addressing Hashing
• Linear Probing Example:

• 16 slots

• Hash function %16

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Linear Probing Example:

• 16 slots

• Hash function %16

• Insert 100

• 100%16 = 4

• Insert into slot 4

1

100

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Insert 85

• 85%16 = 5

• Insert into slot 5

1

100
85

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Insert 120

• 120%16 = 8
1

100
85

120

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Insert 200

• 200%16 = 8

• But slot 8 is occupied

• Put into slot 9

1

100
85

120
200

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Insert 255

• 255%16 = 15
1

100
85

120
200

255

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Insert 20

• 20%16 = 4

• Try slot 4

• Then slot 5

• Then insert into slot 6

1

100
85
20

120
200

255

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Open Addressing Hashing
• Linear probing implementation

class Hashtable:
 def __init__(self, slots):
 self.array = [None]*slots
 self.hash = lambda x : x%slots

Open Addressing Hashing
• Linear probing implementation

class Hashtable:
 def __repr__(self):
 retVal = ''
 for i in range(len(self.array)):
 retVal += '{}: {}\n'.format(i, self.array[i])
 return retVal

Open Addressing Hashing
• Linear probing implementation

class Hashtable:
 def insert(self, key, value):
 slot = self.hash(key)
 while True:
 if self.array[slot]:
 slot = (slot+1).len(self.array)
 else:
 self.array[slot] = (key,value)
 return

Open Addressing Hashing
• Notice that the next slot can wrap around

• Need to reset it to zero then

class Hashtable:
 def insert(self, key, value):
 slot = self.hash(key)
 while True:
 if self.array[slot]:
 slot = (slot+1).len(self.array)
 else:
 self.array[slot] = (key,value)
 return

Open Addressing Hashing
• Linear probing: Reading

• We need to follow the same sequence of slots

def read(self, key):
 slot = self.hash(key)
 while True:
 if not self.array[slot]:
 return None
 else:
 if key == self.array[slot][0]:
 return self.array[slot][1]
 else:
 slot = (slot+1)%len(self.array)

Open Addressing Hashing
• This code contains an unspoken assumption:

• There is a free slot:

• Otherwise, we will loop forever!

def read(self, key):
 slot = self.hash(key)
 while True:
 if not self.array[slot]:
 return None
 else:
 if key == self.array[slot][0]:
 return self.array[slot][1]
 else:
 slot = (slot+1)%len(self.array)

Open Addressing Hashing
• E.g. use a for loop

def read(self, key):
 slot = self.hash(key)
 for i in range(len(self.array)):
 if not self.array[slot]:
 return None
 else:
 if key == self.array[slot][0]:
 return self.array[slot][1]
 else:
 slot = (slot+1)%len(self.array)

Open Addressing Hashing
• This type of unspoken assumption can destroy your

application

• A bug that only happens under very specific
circumstances

• Address this by

• limiting the loop to at most iterationsm

Open Addressing Hashing
• Intuitive Analysis for failed search with probing

• We go to the slot :

• access

• With probability , that slot is occupied and we need to go
to the next one:

• accesses

• With probability , that next one is occupied too, with
total probability :

• accesses

h(key)

1

α

1 + α

α
α2

1 + α + α2

Open Addressing Hashing
• Intuitive Analysis for failed search with probing

• In total: accesses

•

• E.g.: : two slots accessed

• E.g.: : ten slots accessed

1 + α + α2 + α3 + …

=
1

1 − α
α = 0.5

α = 0.9

Open Addressing Hashing
• Expected number in a successful search:

•

• E.g.: : 1.387 slots accessed

• E.g.: : 2.559 slots accessed

1
α

loge(
1

1 − α
)

α = 0.5

α = 0.9

Open Addressing Hashing
• Probe sequence

• Linear probing for key :

•

• Can lead to conveying / primary clustering:

• Contiguous areas of slots

• Use a secondary hash function

• Should have a range co-prime to the number of slots

• Linear probing with secondary hash function for key

•

c

h(c), h(c) + 1,h(c) + 2,…

h2

c

h(c), h(c) + 1 ⋅ h2(c), h(c) + 2 ⋅ h2(c), h(c) + 3 ⋅ h2(c), …

Open Addressing Hashing
• Quadratic probing:

• Use a probe sequence

•

• wrapping around 0, i.e. modulo

h(c), h(c) + 12, h(c) + 22, h(c) + 32, h(c) + 42, …

m

Open Addressing Hashing
• In practice:

• Linear probing can still be faster because cache loads
transfer contiguous sets of memory

Hashing
• Hash schemes work extremely well:

• If load factor can be estimated

• If size of the hash table needs to grow dynamically, things
are no longer so easy

• Extendible hashing

• Linear hashing

