Hashing

Thomas Schwarz, SJ

Dictionary

- ADS for key-value pairs
 - CRUD operations:
 - Create
 - Read
 - Update
 - Delete
 - Does not assume nor support ordering of keys

Dictionary

- Example:
 - A compiler takes a variable name (= key)
 - and associates various data such as type etc. (value)

- If the key space is small
 - Use Direct Addressing
 - Array for all possible key values with pointers to values
 - Null-pointers (None) if key not in the dictionary

Direct Mapping Array

Associated Values

- Direct addressing:
 - Number of actual keys needs to be close to the number of possible keys
 - Keys need to be convertible to indices

- Direct addressing:
 - Number of actual keys needs to be close to the number of possible keys
 - Keys need to be convertible to indices

- Variants: The value can be stored directly in the array
 - E.g.: When the value has fixed length

- If the universe U of keys is large
 - Table with $\mid U \mid$ entries is too big
 - And most of its entries would be Nones
- Use a *hash* function
 - $h: U \longrightarrow \{0, 1, \dots, m-1\}$
 - with few collisions
 - A collision are two elements of U that map to the same number
 - $u_1, u_2 \in U, u_1 \neq u_2, h(u_1) = h(u_2)$

Hash Table

0 Universe of Keys value₄ k_4 $\mathbf{1}_{\mathcal{V}}$ 2 h 3 h value₁ k₁ -4⊳ ⊳ 5 Actual keys value₃ k₃ 6 ⊳ h 7 k_2 k_5 k₁ 8 9 k_4 10 k₃ h value₂ k_2 11 12 13 h 14 15 value₅ k_5 ⊳

- Collisions happen and they must be resolved
 - Chaining:
 - create a linked list of key-value pairs

- Bucketing
 - A linked list is not necessarily the best way to store key-value pairs
 - If the hash table is large, the data will be stored in the pages of a storage system
 - Can have buckets with a given maximum capacity
 - However, we might need to have overflow buckets

- A potential design for buckets:
 - Each bucket has a next pointer to an overflow area
 - And in this case a fixed capacity to store key-value pairs

• Here: a full bucket with one overflow record

- Vocabulary:
 - A hash table T has
 m slots
 - with *n* records.
 - Its load factor is $\alpha = n/m$.

- Worst performance:
 - The hash function maps all record keys to the same slot
 - Finding a key-value pair then takes
 - *n* accesses to a key-value pair if the record is not there
 - On average (n + 1)/2 accesses if the record is there
 - because

$$(1+2+\ldots+n)/n = \frac{(n+1)n}{2n} = \frac{n+1}{2}$$

- Why would this happen:
 - The hash function is bad
 - This happens if people make up their own hash functions
 - The data is cooked
 - "Adversary model": Evaluate algorithms and ADS by finding the worst possible instance of data
 - Someone controls the input and is attacking your system
 - Bad luck
 - Murphy's law: If something bad can happen, it will happen eventually

- Average performance analysis:
 - Assume that a hash function is equally likely to send a record to a certain slot
 - This can be *de facto* guaranteed with cryptographically secure hash functions (see below)

- Call n_i the number of records (= key-value pairs) that are hashed to slot i ($i \in \{0, 1, ..., n 1\}$)
- Then $n_0 + n_1 + \dots + n_{m-2} + n_{m-1} = n$
- Expected number of records accessed for an unsuccessful search:
 - Equal to the length of the chain, i.e. to n_i

• On average:
$$\frac{n_0 + n_1 + n_2 + \dots + n_{m-2} + n_{m-1}}{m} = \frac{n}{m} = \alpha$$

- Total expected work: Need to calculate the hash function etc.
 - $\Theta(1 + \alpha)$ (the one because α can be zero.)

• Successful search:

• In a list of *r* records, we access on average
$$\frac{r+1}{2}$$
 records

- If each record <u>were</u> in a random slot:
 - Average number of records accessed during a successful search is therefore

$$\frac{\frac{n_0+1}{2} + \frac{n_1+1}{2} + \dots \frac{n_{m-2+1}}{2} + \frac{n_{m-1}+1}{2}}{m}$$

$$= \frac{n_0 + n_1 + \dots + n_{m-2} + n_{m-1} + m}{2m}$$

$$= \frac{n+m}{2m} = \frac{1}{2}\alpha + 1 = \Theta(1+\alpha)$$

- Successful search:
 - But records are more likely to be in full slots
 - Therefore, this analysis is false
 - Probability that two keys are in the same slot is $\frac{1}{m}$
 - A search for a record visits exactly those records that:
 - Are in the same slot
 - And have been inserted before

- Order all records $[k_0, v_0], [k_1, v_1], ..., [k_{n-1}, v_{n-1}]$ by insertion
 - Then search for k_i touches all records with $k_0, k_1, \ldots, k_{i-1}$
 - But only if they are inserted into the same slot
 - which happens with probability $\frac{1}{m}$
 - Therefore:
 - Search for record i looks at -i records plus itself

- Search for record *i* looks at $\frac{i}{m}$ records plus itself
- On average:

$$\frac{1}{n} \left(\sum_{i=0}^{n-1} \left(\frac{i}{m} + 1 \right) \right)$$

= $1 + \frac{1}{nm} \sum_{i=0}^{n-1} i$
= $1 + \frac{n(n-1)}{2nm}$
= $1 + \frac{n}{2m} - \frac{1}{2nm} = 1 + \frac{1}{2}\alpha - \frac{1}{2nm}$

- A good hash function:
 - each key is equally likely to hash to any of the *m* slots
 - independently where any other keys are hashed to
- Usually cannot be ascertained:
 - We do not know enough about the distribution of keys

- Example:
 - Assume that keys are random number between 0 and 1
 - Good hash function is:
 - $h(k) = \lfloor k \cdot m \rfloor$

import random

m=5

def hash(u):
 return int(u*m)

- Interpreting keys as natural numbers
 - Many hash functions work on natural numbers
 - Need to translate to integers:
 - Example:
 - For strings:
 - convert encoding to numerical representation

```
def str_to_int(astring):
    result = 0
    for letter in astring:
        result = ord(letter) + 256*result
        return result
```

• Example

- Caution:
 - The transformation and the hash function combination can have weird effects
 - E.g. A string obtained by swapping to letters might have the same hash
 - Which could be useful or could be very bad

- Simple hash functions:
 - Division method:
 - Convert keys to integers
 - Then hash to the integer obtained as remainder by division with *m*

```
def hash(key):
    return key_2_int(key)%m
```

- Division method:
 - If *m* is a power of 2:
 - Hash is the last bits
 - Which is usually bad
 - If $m = 2^p 1$ and keys are strings:
 - swapping two letters does not change the hash value
 - Better experience:
 - Primes close to a power of 2

- Multiplication Method:
 - Key *k* is a *l* bit value
 - Use a constant s of size l bits
 - Multiply: *ks*, a 2/ bit value
 - Select hash as upper bits of the lower half

• How to select *s*:

• D. Knuth proposes to use the first / bits of $\frac{\sqrt{5}-1}{2}$

 \bullet

- Example:
 - 32-bit keys
 - $s = \lfloor (\sqrt{5} 1)/2 \rfloor$
 - Extract 14 bits:
 - Shift right by 18 (14+18 = 32)
 - Then mask with 14 ones: b11 1111 1111 1111 = 0x3fff

```
s = int((math.sqrt(5)-1)/2 * 2**32)
def hash(x):
    return (s*x >> 18) & 0x3fff
```

- Cryptographically secure hash functions:
 - Hash functions have applications in security
 - Instead of storing a password, store the hash of a password together with the user name
 - "user_name", h(pass_word)
 - When user enters the password:
 - System calculates the hash of the entered password
 - And compares with the hash

- Cryptographically secure hash functions:
 - Generate long hashes (224 512 bits)
 - If an attacker steals the user database:
 - Attacker has only the hash, but not the password
- Cryptographically secure hash function *h*:
 - Impossible to calculate x from h(x)

- This is why you should not choose words in a language as password: "peaches"
 - Attacker can try out
 - All words in English (~200,000),
 - All words in Hindi ShabdSagar (~93,000 250,000)

- Secure hash functions are the result of competitions and public scrutiny
 - Provide pre-image resistance:
 - Impossible to find x from h(x)
 - Provide collision resistance:
 - Impossible to find x and y such that h(x) = h(y)
 - Certified by NIST and similar institutions
 - SHA-3 (NIST)
 - Blake3 (latest considered to be safe)

- Should you use cryptographically secure hash functions?
 - If your data cannot be generated by an adversary
 - If you can live with small inadequacies
 - Not necessary
- Otherwise:
 - Extract as many bits as needed from a cryptographically secure hash function
 - Pay the performance costs

- Idea: Records (= key-value pair) are stored in the hash table itself
 - Collisions are resolved by storing a record elsewhere

- Linear probing:
 - If a slot is occupied, go to the next slot

- Linear Probing Example:
 - 16 slots
 - Hash function %16

- Linear Probing Example:
 - 16 slots
 - Hash function %16
 - Insert 100
 - 100%16 = 4
 - Insert into slot 4

- Insert 85
- 85%16 = 5
- Insert into slot 5

- Insert 120
 - 120%16 = 8

- Insert 200
 - 200%16 = 8
 - But slot 8 is occupied
 - Put into slot 9

- Insert 255
 - 255%16 = 15

- Insert 20
 - 20%16 = 4
 - Try slot 4
 - Then slot 5
 - Then insert into slot 6

• Linear probing implementation

```
class Hashtable:
    def __init__(self, slots):
        self.array = [None]*slots
        self.hash = lambda x : x%slots
```

• Linear probing implementation

```
class Hashtable:
    def __repr__(self):
        retVal = ''
        for i in range(len(self.array)):
            retVal += '{}: {}\n'.format(i, self.array[i])
        return retVal
```

• Linear probing implementation

```
class Hashtable:
    def insert(self, key, value):
        slot = self.hash(key)
        while True:
            if self.array[slot]:
                slot = (slot+1).len(self.array)
            else:
                self.array[slot] = (key,value)
                return
```

- Notice that the next slot can wrap around
 - Need to reset it to zero then

```
class Hashtable:
    def insert(self, key, value):
        slot = self.hash(key)
        while True:
            if self.array[slot]:
                slot = (slot+1).len(self.array)
            else:
                self.array[slot] = (key,value)
                return
```

- Linear probing: Reading
 - We need to follow the same sequence of slots

```
def read(self, key):
    slot = self.hash(key)
    while True:
        if not self.array[slot]:
            return None
    else:
            if key == self.array[slot][0]:
                return self.array[slot][1]
            else:
               slot = (slot+1)%len(self.array)
```

- This code contains an unspoken assumption:
 - There is a free slot:
 - Otherwise, we will loop forever!

```
def read(self, key):
    slot = self.hash(key)
    while True:
        if not self.array[slot]:
            return None
    else:
            if key == self.array[slot][0]:
               return self.array[slot][1]
            else:
               slot = (slot+1)%len(self.array)
```

• E.g. use a for loop

```
def read(self, key):
    slot = self.hash(key)
    for i in range(len(self.array)):
        if not self.array[slot]:
            return None
    else:
            if key == self.array[slot][0]:
               return self.array[slot][1]
            else:
               slot = (slot+1)%len(self.array)
```

- This type of unspoken assumption can destroy your application
 - A bug that only happens under very specific circumstances
 - Address this by
 - limiting the loop to at most *m* iterations

- Intuitive Analysis for failed search with probing
 - We go to the slot h(key):
 - 1 access
 - With probability α, that slot is occupied and we need to go to the next one:
 - $1 + \alpha$ accesses
 - With probability α , that next one is occupied too, with total probability α^2 :
 - $1 + \alpha + \alpha^2$ accesses

- Intuitive Analysis for failed search with probing
 - In total: $1 + \alpha + \alpha^2 + \alpha^3 + \dots$ accesses

$$\bullet = \frac{1}{1 - \alpha}$$

- E.g.: $\alpha = 0.5$: two slots accessed
- E.g.: $\alpha = 0.9$: ten slots accessed

• Expected number in a successful search:

•
$$\frac{1}{\alpha} \log_e(\frac{1}{1-\alpha})$$

- E.g.: $\alpha = 0.5$: 1.387 slots accessed
- E.g.: $\alpha = 0.9$: 2.559 slots accessed

- Probe sequence
 - Linear probing for key *c*:
 - h(c), h(c) + 1, h(c) + 2, ...
 - Can lead to conveying / primary clustering:
 - Contiguous areas of slots
- Use a **secondary** hash function h_2
 - Should have a range co-prime to the number of slots
 - Linear probing with secondary hash function for key *c*
 - $h(c), h(c) + 1 \cdot h_2(c), h(c) + 2 \cdot h_2(c), h(c) + 3 \cdot h_2(c), \dots$

- Quadratic probing:
 - Use a probe sequence
 - $h(c), h(c) + 1^2, h(c) + 2^2, h(c) + 3^2, h(c) + 4^2, \dots$
 - wrapping around 0, i.e. modulo *m*

- In practice:
 - Linear probing can still be faster because cache loads transfer contiguous sets of memory

Hashing

- Hash schemes work extremely well:
 - If load factor can be estimated
- If size of the hash table needs to grow dynamically, things are no longer so easy
 - Extendible hashing
 - Linear hashing