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Dictionary
• ADS for key-value pairs


• CRUD operations:


• Create


• Read


• Update


• Delete


• Does not assume nor support ordering of keys



Dictionary
• Example:


• A compiler takes a variable name (= key)


• and associates various data such as type etc. (value)



Direct Addressing
• If the key space is small


• Use Direct Addressing


• Array for all possible key values with pointers to 
values


• Null-pointers (None) if key not in the dictionary



Direct Addressing
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Direct Addressing
• Direct addressing:


• Number of actual keys needs to be close to the number 
of possible keys


• Keys need to be convertible to indices



Direct Addressing
• Direct addressing:


• Number of actual keys needs to be close to the number 
of possible keys


• Keys need to be convertible to indices



Direct Addressing
• Variants: The value can be stored directly in the array


• E.g.: When the value has fixed length



Hash Tables
• If the universe  of keys is large


• Table with  entries is too big


• And most of its entries would be Nones


• Use a hash function


• 


• with few collisions 

• A collision are two elements of  that map to the same 
number


•

U

|U |

h : U ⟶ {0,1,…, m − 1}

U

u1, u2 ∈ U, u1 ≠ u2, h(u1) = h(u2)



Hash Tables
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Hash Tables
• Collisions happen and they must be resolved


• Chaining:


• create a linked list of key-value pairs



Hash Tables
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Hash Tables
• Bucketing


• A linked list is not necessarily the best way to store 
key-value pairs


• If the hash table is large, the data will be stored in the 
pages of a storage system


• Can have buckets with a given maximum capacity


• However, we might need to have overflow buckets



Hash Tables
• A potential design for buckets:


• Each bucket has a next pointer to an overflow area


• And in this case a fixed capacity to store key-value 
pairs


• Here: a full bucket with one overflow record
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Performance of Hashing 
with Chaining

• Vocabulary: 


• A hash table  has 
 slots


• with  records.


• Its load factor is 
.
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Performance of Hashing 
with Chaining

• Worst performance:


• The hash function maps all record keys to the same slot


• Finding a key-value pair then takes


•  accesses to a key-value pair if the record is not 
there


• On average  accesses if the record is there


• because 

n

(n + 1)/2

(1 + 2 + … + n)/n =
(n + 1)n

2n
=

n + 1
2



Performance of Hashing 
with Chaining

• Why would this happen:


• The hash function is bad


• This happens if people make up their own hash functions


• The data is cooked


• "Adversary model": Evaluate algorithms and ADS by 
finding the worst possible instance of data


• Someone controls the input and is attacking your system


• Bad luck


• Murphy's law:  If something bad can happen, it will happen 
eventually



Performance of Hashing 
with Chaining

• Average performance analysis:


• Assume that a hash function is equally likely to send a 
record to a certain slot


• This can be de facto guaranteed with cryptographically 
secure hash functions (see below)



Performance of Hashing 
with Chaining

• Call  the number of records (= key-value pairs) that are hashed to 
slot   ( )


• Then 


• Expected number of records accessed for an unsuccessful 
search:


• Equal to the length of the chain, i.e. to  


• On average:  


• Total expected work: Need to calculate the hash function etc.


•   (the one because  can be zero.)

ni
i i ∈ {0,1,…, n − 1}

n0 + n1 + …nm−2 + nm−1 = n

ni

n0 + n1 + n2 + … + nm−2 + nm−1

m
=

n
m

= α

Θ(1 + α) α



Performance of Hashing 
with Chaining

• Successful search:


• In a list of  records, we access on average  records


• If each record were in a random slot:


• Average number of records accessed during a successful search is 
therefore


• 


• 


• = 

r
r + 1

2

n0 + 1
2 + n1 + 1

2 + …
nm−2+1

2 +
nm−1 + 1

2

m

=
n0 + n1 + … + nm−2 + nm−1 + m

2m
n + m

2m
=

1
2

α + 1 = Θ(1 + α)



Performance of Hashing 
with Chaining

• Successful search:


• But records are more likely to be in full slots


• Therefore, this analysis is false 

• Probability that two keys are in the same slot is 


• A search for a record visits exactly those records 
that:


• Are in the same slot


• And have been inserted before

1
m



Performance of Hashing 
with Chaining

• Order all records   by 
insertion


• Then search for   touches all records with 


• But only if they are inserted into the same slot


• which happens with probability 


• Therefore: 


• Search for record  looks at  records plus itself

[k0, v0], [k1, v1], …, [kn−1, vn−1]

ki k0, k1, …, ki−1

1
m

i
i
m



Performance of Hashing 
with Chaining

• Search for record  looks at  records plus itself


• On average:
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Hash Functions
• A good hash function:


• each key is equally likely to hash to any of the  slots


• independently where any other keys are hashed to


• Usually cannot be ascertained:


• We do not know enough about the distribution of keys

m



Hash Functions
• Example:


• Assume that keys are random number between 0 and 1


• Good hash function is:


• h(k) = ⌊k ⋅ m⌋

import random 

m=5 

def hash(u): 
    return int(u*m)



Hash Functions
• Interpreting keys as natural numbers


• Many hash functions work on natural numbers


• Need to translate to integers:


• Example:


• For strings:


• convert encoding to numerical representation
def str_to_int(astring): 
    result = 0 
    for letter in astring: 
        result = ord(letter) + 256*result 
    return result



Hash Functions
• Example

def str_to_int(astring): 
    result = 0 
    for letter in astring: 
        result = ord(letter) + 256*result 
    return result

‘a     

'0x61' '0x62’ '0x63’

b c’

’97’ ’98’ ’99’

97*256*256 + 98*256 + 99



Hash Functions
• Caution:


• The transformation and the hash function combination 
can have weird effects


• E.g. A string obtained by swapping to letters might 
have the same hash


• Which could be useful or could be very bad



Hash Functions
• Simple hash functions:


• Division method:


• Convert keys to integers


• Then hash to the integer obtained as remainder by 
division with m

def hash(key): 
return key_2_int(key)%m



Hash Functions
• Division method:


• If  is a power of 2:


• Hash is the last bits


• Which is usually bad


• If  and keys are strings: 


• swapping two letters does not change the hash value


• Better experience:


• Primes close to a power of 2

m

m = 2p − 1



Hash Functions

• Key  is a l bit value


• Use a constant  of size l 
bits


• Multiply: , a 2l bit value


• Select hash as upper bits 
of the lower half 

k

s

ks

k

sx

rhigh rlow}

h(k)

• Multiplication Method:



Hash Functions
• How to select :


• D. Knuth proposes to use the first l bits of 


•

s

5 − 1
2



Hash Functions
• Example:


• 32-bit keys


• 


• Extract 14 bits:


• Shift right by 18 (14+18 = 32)


• Then mask with 14 ones:  b11 1111 1111 1111 = 
0x3fff

s = ⌊( 5 − 1)/2⌋

s = int((math.sqrt(5)-1)/2 * 2**32) 
def hash(x): 
    return (s*x >> 18) & 0x3fff



Hash Functions
• Cryptographically secure hash functions:


• Hash functions have applications in security


• Instead of storing a password, store the hash of a 
password together with the user name


• "user_name", h(pass_word)


• When user enters the password:


• System calculates the hash of the entered 
password


• And compares with the hash



Hash Functions
• Cryptographically secure hash functions:


• Generate long hashes (224 - 512 bits)


• If an attacker steals the user database:


• Attacker has only the hash, but not the password


• Cryptographically secure hash function :


• Impossible to calculate  from 

h

x h(x)



Hash Functions
• This is why you should not choose words in a language 

as password:  "peaches"


• Attacker can try out 


• All words in English (~200,000), 


• All words in Hindi ShabdSagar (~93,000 - 250,000)



Hash Functions
• Secure hash functions are the result of competitions and 

public scrutiny 


• Provide pre-image resistance:


• Impossible to find  from 


• Provide collision resistance:


• Impossible to find  and  such that 


• Certified by NIST and similar institutions


• SHA-3 (NIST)


• Blake3 (latest considered to be safe)

x h(x)

x y h(x) = h(y)



Hash Functions
• Should you use cryptographically secure hash functions?


• If your data cannot be generated by an adversary


• If you can live with small inadequacies


• Not necessary


• Otherwise: 


• Extract as many bits as needed from a 
cryptographically secure hash function


• Pay the performance costs



Open Addressing Hashing
• Idea: Records (= key-value pair) are stored in the hash 

table itself


• Collisions are resolved by storing a record elsewhere



Open Addressing Hashing
• Linear probing:


• If a slot is occupied, go to the next slot



Open Addressing Hashing
• Linear Probing Example:


• 16 slots


• Hash function %16
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Open Addressing Hashing
• Linear Probing Example:


• 16 slots


• Hash function %16


• Insert 100 


• 100%16 = 4


• Insert into slot 4
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Open Addressing Hashing
• Insert 85


• 85%16 = 5


• Insert into slot 5
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Open Addressing Hashing
• Insert 120


• 120%16 = 8
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Open Addressing Hashing
• Insert 200


• 200%16 = 8


• But slot 8 is occupied


• Put into slot 9
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Open Addressing Hashing
• Insert 255


• 255%16 = 15
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Open Addressing Hashing
• Insert 20


• 20%16 = 4


• Try slot 4


• Then slot 5


• Then insert into slot 6
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Open Addressing Hashing
• Linear probing implementation

class Hashtable: 
    def __init__(self, slots): 
        self.array = [None]*slots 
        self.hash = lambda x : x%slots



Open Addressing Hashing
• Linear probing implementation

class Hashtable: 
   def __repr__(self): 
        retVal = '' 
        for i in range(len(self.array)): 
            retVal += '{}: {}\n'.format(i,  self.array[i]) 
        return retVal



Open Addressing Hashing
• Linear probing implementation

class Hashtable: 
   def insert(self, key, value): 
        slot = self.hash(key) 
        while True: 
            if self.array[slot]: 
                slot = (slot+1).len(self.array) 
            else: 
                self.array[slot] = (key,value) 
                return



Open Addressing Hashing
• Notice that the next slot can wrap around


• Need to reset it to zero then

class Hashtable: 
   def insert(self, key, value): 
        slot = self.hash(key) 
        while True: 
            if self.array[slot]: 
                slot = (slot+1).len(self.array) 
            else: 
                self.array[slot] = (key,value) 
                return



Open Addressing Hashing
• Linear probing: Reading


• We need to follow the same sequence of slots

def read(self, key): 
        slot = self.hash(key) 
        while True: 
            if not self.array[slot]: 
                return None 
            else: 
                if key == self.array[slot][0]: 
                    return self.array[slot][1] 
                else: 
                    slot = (slot+1)%len(self.array)



Open Addressing Hashing
• This code contains an unspoken assumption:


• There is a free slot:


• Otherwise, we will loop forever!

def read(self, key): 
        slot = self.hash(key) 
        while True: 
            if not self.array[slot]: 
                return None 
            else: 
                if key == self.array[slot][0]: 
                    return self.array[slot][1] 
                else: 
                    slot = (slot+1)%len(self.array)



Open Addressing Hashing
• E.g. use a for loop

def read(self, key): 
        slot = self.hash(key) 
        for i in range(len(self.array)): 
            if not self.array[slot]: 
                return None 
            else: 
                if key == self.array[slot][0]: 
                    return self.array[slot][1] 
                else: 
                    slot = (slot+1)%len(self.array)



Open Addressing Hashing
• This type of unspoken assumption can destroy your 

application


• A bug that only happens under very specific 
circumstances


• Address this by 


• limiting the loop to at most  iterationsm



Open Addressing Hashing
• Intuitive Analysis for failed search with probing


• We go to the slot : 


•  access


• With probability , that slot is occupied and we need to go 
to the next one: 


•  accesses


• With probability , that next one is occupied too, with 
total probability : 


•  accesses

h(key)

1

α

1 + α

α
α2

1 + α + α2



Open Addressing Hashing
• Intuitive Analysis for failed search with probing


• In total:   accesses


• 


• E.g.: : two slots accessed


• E.g.: : ten slots accessed

1 + α + α2 + α3 + …

=
1

1 − α
α = 0.5

α = 0.9



Open Addressing Hashing
• Expected number in a successful search:


• 


• E.g.:  :  1.387 slots accessed


• E.g.:  : 2.559 slots accessed

1
α

loge(
1

1 − α
)

α = 0.5

α = 0.9



Open Addressing Hashing
• Probe sequence


• Linear probing for key :


• 


• Can lead to conveying / primary clustering: 


• Contiguous areas of slots


• Use a secondary hash function 


• Should have a range co-prime to the number of slots


• Linear probing with secondary hash function for key 


•  

c

h(c), h(c) + 1,h(c) + 2,…

h2

c

h(c), h(c) + 1 ⋅ h2(c), h(c) + 2 ⋅ h2(c), h(c) + 3 ⋅ h2(c), …



Open Addressing Hashing
• Quadratic probing:


• Use a probe sequence 


• 


• wrapping around 0, i.e. modulo 

h(c), h(c) + 12, h(c) + 22, h(c) + 32, h(c) + 42, …

m



Open Addressing Hashing
• In practice:


• Linear probing can still be faster because cache loads 
transfer contiguous sets of memory 



Hashing
• Hash schemes work extremely well:


• If load factor can be estimated


• If size of the hash table needs to grow dynamically, things 
are no longer so easy


• Extendible hashing


• Linear hashing


