
Linear Hashing

Linear Hashing
• Extensible Hashing:

• Uses a lot of metadata to reflect history of splitting

• But only splits buckets when they are needed

• Linear Hashing

• Splits buckets in a predefined order

• Minimal meta-data

• Sounds like a horrible idea, but …

Linear Hashing
• Assume a hash function that creates a large string of bits

• We start using these bits as we extend the address
space

• Start out with a single bucket, Bucket 0

• All items are located in Bucket 0

Items with keys 19, 28, 33

Bucket 0:

19, 28, 33

Linear Hashing
• Eventually, this bucket will overflow

• E.g. if the load factor is more than 2

• Bucket 0 splits

• All items in Bucket 0 are rehashed:

• Use the last bit in order to determine whether the
item goes into Bucket 0 or Bucket 1

• Address is h1(c) = c (mod 2)

Linear Hashing
• After the split, the hash table has two buckets:

• After more insertions, the load factor again exceeds 2

Bucket 0:

28

Bucket1:

19, 33

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Linear Hashing
• Again, the bucket splits.

• But it has to be Bucket 0

• For the rehashing, we now use two bits, i.e.

• But only for those items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2:

h2(c) = c (mod 4)

Linear Hashing
• After some more insertions, Bucket 1 will split

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashing
• The state of a linear hash table is described by the

number of buckets

• The level is the number of bits that are being used to
calculate the hash

• The split pointer points to the next bucket to be split

• The relationship is

• This is unique, since always

N
l

s

N = 2l + s
s < 2l

Linear Hashing
• Addressing function

• The address of an item with key is calculated by

• This reflects the fact that we use more bits for buckets
that are already split

c
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 1 = 20 + 0

Number of buckets: 1

Split pointer: 0

Level: 0

Bucket 0:

19, 28, 33

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 2 = 21 + 0

Number of buckets: 2

Split pointer: 0

Level: 1

Bucket 0:

28

Bucket1:

19, 33

Add items with hashes 40 and 11

This gives an overflow and we split Bucket 0

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 3 = 21 + 1

Number of buckets: 3

Split pointer: 1

Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33 split Bucket 0

Create Bucket 2

Use new hash function on items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: No items were moved

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 3 = 21 + 1

Number of buckets: 3

Split pointer: 1

Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: Add items 6, 35

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6
Because of overflow, we split

Bucket 1

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 4 = 22 + 0

Number of buckets: 4

Split pointer: 0

Level: 2

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 4 = 22 + 0

Number of buckets: 4

Split pointer: 0

Level: 2

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Now add keys 8, 49

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35
Creates an overflow!

Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 5 = 22 + 1

Number of buckets: 1

Split pointer: 1

Level: 2

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Create Bucket 4.

Rehash Bucket 0.

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 5 = 22 + 1

Number of buckets: 5

Split pointer: 1

Level: 2

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Add keys 9, 42

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Creates an overflow!

Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 6 = 22 + 2

Number of buckets: 1

Split pointer: 2

Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

No item actually moved, but average load factor is now

again under 2.

Split

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 6 = 22 + 2

Number of buckets: 6

Split pointer: 2

Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:
add 5,10

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 7 = 22 + 3

Number of buckets: 7

Split pointer: 3

Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 7 = 22 + 3

Number of buckets: 7

Split pointer: 3

Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

add 92, 74

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 8 = 23 + 0

Number of buckets: 8

Split pointer: 0

Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 8 = 23 + 0

Number of buckets: 8

Split pointer: 0

Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:
add 13, 54

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 9 = 23 + 1

Number of buckets: 9

Split pointer: 1

Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 9 = 23 + 1

Number of buckets: 9

Split pointer: 1

Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

add 1, 81

Bucket 0: Bucket1:

 1, 9, 33, 49,
81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l

if a < s:

a = hash(c) % 2**(l+1)

return a

N = 10 = 23 + 2

Number of buckets: 10

Split pointer: 2

Level: 3

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

 39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2: Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 10:

 10, 42, 74

Linear Hashing
• Observations:

• Buckets split in fixed order

• 0, 0,1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, …, 15,
0, …

• Address calculation is modulo , i.e. the l least
significant bits

• Buckets 0, 1, …, s-1 and 2**l, 2**l+1, … N-1 are
already split, they have on average half the size of
the buckets s, s+1, …, 2**l.

2l

Linear Hashing
• Observations:

• An overflowing bucket is not necessarily split
immediately

• Sometimes, a split leaves all keys in the splitting bucket
or moves them all to the new bucket

• On average, a bucket will have α items in them

Linear Hashing Rules
• Buckets are numbered

• Number of buckets , split pointer , and level are
related by

• (with)

• Warning: There is a variant where we start with any number of buckets
instead of one. This relationship then no longer holds.

• Address of record with key hashing to is

• or

0,1,…, N − 1

N s l

N = 2l + s s < 2l

c

c (mod 2l) c (mod 2l+1)

File State
• The file state of an LH file is determined by the number

of buckets

• level

• split pointer

• Formula: with as high as possible, i.e.
with

n

l

s

n = 2l + s l
s ∈ {0,1,…,2l − 1}

File State
• Clarification regarding the literature

• The original LH scheme can start with any number of
buckets

• In this class, we are using the most common case

Exercise
• What is the level and the state of an LH file with 13

buckets?

Solution
• We write

• Level is

• Split pointer is

13 = 23 + 5

l = ⌊log2(13)⌋ = 3

s = 13 − l

Exercise
• Where would the records with the following (randomly

picked) keys be inserted?

• 82

• 27

• 37

Solution
• Level is 3, so we use first remainder modulo and

 second

• . Since , we rehash:
 and we insert into bucket 2

• . Since 3 < 5, we rehash:
. We insert into bucket 11

• . Since , we do not rehash but
insert into bucket 5.

23 = 8
24 = 16

82 (mod 8) = 2 2 < 5
82 (mod 16) = 2

27 (mod 8) = 3
27 (mod 16) = 11

37 (mod 8) = 5 5 ≮ 5

Exercise
• Where would the records with the following (randomly

picked) keys be inserted?

• 48

• 60

• 63

• 71

Solution
• . Rehash: and insert

into bucket 0.

• . Rehash: and
insert into bucket 12.

• . Rehash not necessary. Insert into
bucket 7.

• No rehash is necessary.

48 (mod 8) = 0 48 (mod 16) = 0

60 (mod 8) = 4 60 (mod 16) = 12

63 (mod 8) = 7

71 (mod 8) = 7.

Exercise
• Where would the records with the following (randomly

picked) keys be inserted?

• 98

• 75

• 25

• 30

Solution
• . Rehash: . Insert

into bucket 2

• . Rehash: . Insert
into bucket 11

• . Rehash: . Insert
into bucket 9.

• . Insert into bucket 6.

98 (mod 8) = 2 98 (mod 16) = 2

75 (mod 8) = 3 75 (mod 16) = 11

25 (mod 8) = 1 25 (mod 16) = 9

30 (mod 8) = 6

Exercise
• Give the level and split pointer values as an LH file moves

from 6 buckets to 20

Solution
Nr o Buckets Level Split Ptr

6 2 2
7 2 3
8 3 0
9 3 1
10 3 2
11 3 3
12 3 4
13 3 5
14 3 6
15 3 7
16 4 0
17 4 1
18 4 2
19 4 3
20 4 4

Interpretation
• We can encapsulate the behavior of the level and split

pointer into the following algorithm

• We increment the split pointer

• If the split pointer equals then set the split
pointer to zero and increment the level

2level

def split(level, split_pointer):

 split_pointer += 1

 if split_pointer == 2**level:

 split_pointer = 0

 level += 1

 return (level, split_pointer)

Programming Exercise
• Using a programming platform of your choice, implement

the LH addressing algorithm

• Insert 1000 records with key uniformly selected between
0 and into an LH file with (a) 12 and (b) 25
buckets.

• Look at the size of the buckets.

232 − 1

Solution
• I changed the number to 1,000,000

• For 12 buckets:

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11
0

20000

40000

60000

80000

100000

120000

Solution
• Here is the chart for 25 buckets

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

10000

20000

30000

40000

50000

60000

Interpretation
• Even with a perfect hash function, an LH file has buckets

of equal size only if the number of buckets is a power of
two.

• Otherwise, there are buckets already split in the current
round and those not yet split.

• The latter have about twice as many records

