
Linked List 2
Thomas Schwarz, SJ

Iterators
• The current_node programming paradigm is an

iterator

• An iterator has:

• A method to access the current object

• A method to move forward

• And sometimes a method to move backwards

• Methods to compare two different iterators

Linked List Performance
• We can estimate performance of linked -- list operations by

looking at the number of nodes accessed

• Assume a list with nodes

• Inserting at the head: 1 node

• Inserting at the tail: n nodes

• Inserting in the middle: on average

• Deleting at the head: 1 node

• Deleting at the tail: node

• Deleting in the middle: on average

n

n/2

n

n/2

Linked List Performance
• Implementing a stack:

• We access one node

• Implementing a queue:

• Insert at the head, pop at the tail

• Or: Insert at the tail, pop at the head

• One is going to use n nodes

Double Linked List
• To overcome the performance penalty,

• use a double linked list

• Each node has now a forward and a backward
pointer

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

Double Linked List
• And then connect head and tail in order to give a circular

double linked list

• The backward pointer of head allows easy access to the tail

• But:

• For an insert or a delete, we now need to set four pointers
instead of two

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

Double Linked List
• Nodes now have a forward and a backward pointer

class Node:

 def __init__(self, my_record):

 self.forward = None

 self.back = None

 self.record = my_record

 def __repr__(self):

 string = "Class Node "

 string += str(id(self))

 string += ", forward is " + str(id(self.forward))

 string += ", backward is " + str(id(self.forward))

 string += ", record is " + str(self.record)

 return string

Double Linked List
• Creating a double linked list

• Initially the list is empty

• Create a new node

• Then adjust the head and the two node pointers

dll

r
e
c
o
r
d

Double Linked List

dll

r
e
c
o
r
d

if not self.head:

 self.head = new_node

 new_node.forward = new_node

 new_node.back = new_node

1

2
3

Double Linked List
• Inserting at the head:

• Create new node

• Then change the forward pointer of the tail to the new node
new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Set new_node forward to self.head

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Set new_node.backward to the tail

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Set self.head.backward to new_node

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Finally, set dll.head to the new_node

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Code:

• Order is important!

• Easy part: inserting into an empty list

def insert_head(self, record):

 new_node = Node(record)

 if not self.head:

 self.head = new_node

 new_node.forward = new_node

 new_node.back = new_node

dll

r
e
c
o
r
d

Double Linked List
• Order of operations is important!

• Otherwise, we loose access or need a temporary
variable

 def insert_head(self, record):

 new_node = Node(record)

 if not self.head:

 ...

 else:

 self.head.back.forward = new_node

 new_node.back = self.head.back

 self.head.back = new_node

 new_node.forward = self.head

 self.head = new_node

new_node

r
e
c
o
r
d

dll

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

r
e
c
o
r
d

self.head self.head.backward

Double Linked List
• Printing all records from left to right

• Use the current_node paradigm:

def print_it_forward(self):

 current = self.head

 while current:

 print(current.record)

 current = current.forward

 if current == self.head:

 return

Double Linked List
• Printing all nodes from right to left

• def print_it_backward(self):

 current = self.head.back

 while current:

 print(current.record)

 current = current.back

 if current == self.head.back:

 return

Double Linked List
• We can also build an explicit iterator class

• Iterators

• provide access to the record

• allow us to move to the next record

• allow us to move to the previous record

• can compare two iterators

Double Linked List
• Implementation

class DLL_Iterator:

 def __init__(self, dll):

 self.current_node = dll.head

 self.dll = dll

 def forward(self):

 self.current_node = self.current_node.forward

 def backward(self):

 self.current_node = self.current_node.back

 def get_record(self):

 return self.current_node.record

 def at_tail(self):

 return self.current_node == self.dll.head.back

 def at_head(self):

 return self.current_node == self.dll.head

 def __eq__(self, other):

 return self.dll == other.dll and self.current_node ==
other.current_node

Double Linked List
• Example based on iterator

it = DLL_Iterator(dll)

while True:

 print(it.get_record())

 it.forward()

 if it.at_head():

 break

Double Linked List
• Homework:

• Add to the iterator class to set an iterator to the tail

Double Linked List
• Maintaining an ordered double linked list

• Add a field key to the Node class

 class Node:

 def __init__(self, my_record, key):

 self.forward = None

 self.back = None

 self.record = my_record

 self.key = key

Double Linked List
• Only difference:

• Now need to insert in the middle of a list

• One special case:

• Inserting in an empty list

• Normal case

• Inserting between two nodes

• which can be identical

Double Linked List
• Special case:

• If the list is empty, self.head is None

class OLL:

 """implements an ordered list of double linked nodes """

 def __init__(self):

 self.head = None

Double Linked List
• Special case:

• If the list is empty, self.head is None

• Do not forget to set the forward and back pointers

class OLL:

 """implements an ordered list of double linked nodes """

 def insert(self, my_record, my_key):

 new_node = Node(my_record, my_key)

 if self.head:

 else:

 self.head = new_node

 new_node.forward = new_node

 new_node.back = new_node

Double Linked List

odll

 else:

 self.head = new_node

 new_node.forward = new_node

 new_node.back = new_node

Double Linked List
• Inserting between two nodes

• Implement as a class (not instance) method

• Reset four pointers
odll

Double Linked List
odll

 def insert_before_after(new_node, left, right):

 left.forward = new_node

 new_node.back = left

 new_node.forward = right

 right.back = new_node

Double Linked List
• Need to find the insertion point:

• Slightly tricky, because if the inserted key is larger than
the present key, we do not want to circle around

• Special case: The key to be inserted is smaller, so the
new node becomes the head.

• In which case we insert between the head and
head.back

• Even if they are the same node

Double Linked List
• Special case if we insert at the beginning, because we

then need to reset self.head

• Notice that it says OLL.insert_before_after because this
is a class method

if self.head:

 current_node = self.head

 if my_key < self.head.key:

 OLL.insert_before_after(new_node,

 self.head,

 self.head.forward)

 self.head = new_node

Double Linked List
• Otherwise, we need to find the insertion point

• Start out with current_node = self.head

• Then move to the right until current_node.forward has a
larger key

• This gives us the insertion point

Double Linked List
• Finding the insertion point

• Already excluded that we need to insert before the head

• key is 35, which is more than current.forward.key

• Move current to the left

10 20 30 40 50

35

current

newnode

Double Linked List
• Finding the insertion point

• current.forward.key is 30 is

• still less than 35

• move
10 20 30 40 50

35

current

newnode

Double Linked List
• Finding the insertion point:

• But not any longer: current.forward.key is 40

10 20 30 40 50

35

current

newnode

Double Linked List
• Finding the insertion point

• Now we have found the insertion point

• Insert between current and current.forward

10 20 30 40 50

35

current

newnode

Double Linked List
• Found the insertion point and inserted

10 20 30 40 50

35

current

newnode

Double Linked List
• Walk through the list

• Can but not have to use iterators

def show(self):

 if not self.head:

 print('empty')

 return

 print(self.head.key, self.head.record, sep=': ')

 current_node = self.head.forward

 while current_node != self.head:

 print(current_node.key, current_node.record, sep= ': ')

 current_node = current_node.forward

Double Linked List
• Deleting a record

• Need to find the record first

• Then delete the node

• Special case:

• This is the only node

• In which case forward and back pointer point
to the same node

Double Linked List
• Deleting a node from several nodes:

odll current_node to be deleted

odll current_node to be deleted

Double Linked List
• Deleting the only node

• Just set self.head to None

 def delete(self, key):

 current_node = self.head

 if current_node.forward == current_node:

 # there is only one node left

 self.head = None

Double Linked List
• Otherwise:

• Use the current_node pointer (effectively an iterator) in
order to find the node to be deleted

• But be careful, because the key might not be there

• After going to the next node, check that we are not
at the beginning

Double Linked List
def delete(self, key):

 current_node = self.head

 if current_node.forward == current_node:

 # there is only one node left

 self.head = None

 return

 while True:

 if current_node.key == key:

 self.delete_node(current_node)

 return

 else:

 current_node = current_node.forward

#Check that we have not reached the beginning of the list

 if current_node == self.head:

 return

Double Linked List
• Deletion itself is fairly simple

odll current_node to be deleted

odll current_node to be deleted

def delete_node(self, current_node):

 if self.head == current_node:

 self.head = current_node.forward

 left = current_node.back

 right = current_node.forward

 left.forward = right

 right.back = left

Double Linked List
• But needs to take care of the case where we delete the

head of the list

• Though we can verify that we only need to reset head.

def delete_node(self, current_node):

 if self.head == current_node:

 self.head = current_node.forward

 left = current_node.back

 right = current_node.forward

 left.forward = right

 right.back = left

Double Linked List
• Performance

• Storage costs

• Python is generous with using storage

• Each object has a number of fields

• If we implement in a high performance language
like C

• Per record, need a node with three pointers

• 3*32 or 3*64 bits = 12B, 24B per object

Double Linked List
• Timing measured in number of nodes

• Double linked list as a Stack

• insert / delete at head (1 node)

• Double linked list as a Queue

• insert at head / delete at tail (1 / 2 nodes)

• insert at tail / delete at head (2 / 1 nodes)

• Sometimes Stack and Queue are combined in a single
structure: Deque

Double Linked List
• Performance

• Ordered linked list:

• Finding a record, inserting a record, deleting a record

• Timing is nodes on averagen/2

Software Engineering
• This is highly non-trivial code

• I know because of the mistakes that I make

Software Engineering
• Two core problems of Software Engineering:

• How to get people to work on code together
successfully

•

Software Engineering
• Second problem:

• How can we guarantee correctness of code

• Formal methods

• Not popular because very difficult

• Testing

• Difficult because we need to test for all things that
are likely to go wrong

Software Engineering
• Test generation:

• Think about all things that could have an influence

• E.g. node deletion: location of node with respect to other
nodes

• Lonely node

• Node at the beginning

• Node at the end

• Node in the middle

• Node first after head

• ...

Software Engineering
• Test Generation:

• Write a test for all of these cases

Software Engineering
• Idea of unit tests

• Divide tasks into modules

• Implementing a cyclical ordered linked list would be
a module

• Modularization:

• Makes design easier

• Allows small groups to generate software

• Can test already at the unit level

Software Engineering
• Unit tests in Python

• Can have code that only executes if the module is the one that is
called

• But not if the module is imported

if __name__ == '__main__':

 oll = OLL()

 oll.insert('z',1)

 oll.insert('a', 100000)

 oll.insert('d', 2)

 oll.insert('e', 3)

 for _ in range(10):

 x = random.getrandbits(16)

 print(x)

 oll.insert(3*str(x),x)

 oll.show()

Software Engineering
• One of the big problems is software maintenance

• The programmer or someone else will add functionality
and / or change the implementation

• A simple code addition can break code elsewhere

• Therefore:

• Test the interface in the unit test

• So that an addition / modification that breaks an
interface can be caught

Software Engineering
• Hence:

• Test your algorithms

• By making all case distinction

• And verifying your code with paper and pencil

• This is formal method (very) light

Software Engineering
• Hence:

• Test your implementation

• By making all case distinctions

• And writing test code for them

• Even better: print out what the result of your
test should be

Software Engineering
• What to do when you detect an error

• READ the ERROR MESSAGE

• Identify the location of the fault

• The error happened there or before on the execution
path

• Adorn your code with additional print statements

• To help you locate the statement that causes the
error

Software Engineering
• What type of errors should you expect:

• Typos and similar mechanical errors that are not
detected by the UI

• Violated assumptions

• You deal with that by making your assumptions
explicit

• You do not need to write them down, just
acknowldge them

Software Engineering
• Debugging is more of an art than science

• Experience helps a lot

