Linked List 2

Thomas Schwarz, SJ

lterators

e The current node programming paradigm is an
iterator

* An iterator has:
* A method to access the current object
A method to move forward
* And sometimes a method to move backwards

* Methods to compare two different iterators

Linked List Performance

e We can estimate performance of linked -- list operations by
looking at the number of nodes accessed

e Assume a list with n nodes
* Inserting at the head: 1 node

* |Inserting at the tail: n nodes

e Inserting in the middle: n/2 on average

 Deleting at the head: 1 node
e Deleting at the tail: n node

e Deleting in the middle: n/2 on average

Linked List Performance

* Implementing a stack:
* We access one node

* Implementing a queue:
* |nsert at the head, pop at the tall
 Or: Insert at the tail, pop at the head

* One is going to use n nodes

Double Linked List

 To overcome the performance penalty,
e use a double linked list

e Each node has now a forward and a backward
pointer

Double Linked List

* And then connect head and tail in order to give a circular
double linked list

dll - : ofF—_—21° | o olc e | o . Tl e | o| "' Tl e [0 | "~ Tl
ivi \vi fw

[quoaq}\&/%

[Q.—ﬁOOCD—‘}

[Q_-‘OOCDW}
[Q.-ﬁOO(‘Dﬂ}
[Q_-ﬂOO(‘D-‘}

[Q."OOCD*

e The backward pointer of head allows easy access to the tail

e But:

e For an insert or a delete, we now need to set four pointers
instead of two

Double Linked List

* Nodes now have a forward and a backward pointer

class Node:
def 1nit (self, my record):

self.forward = None

self .back = None

self.record = my record

def

string
string
string
string
string
return

__repr (self):

= "Class Node "
+= str (id(self))

+= ", forward is " + str(id(self.forward))
+= ", backward is " + str(id(self.forward))
+= ", record i1is " + str(self.record)

string

Double Linked List

e Creating a double linked list
e |nitially the list is empty
e Create a new node

* Then adjust the head and the two node pointers

A

Double Linked List

1if not self.head:

self.head = new node
new node.forward = new node

new node.back

= new_node

dlil —4 °

S

Double Linked List

* Inserting at the head:
e Create new node

 Then change the forward pointer of the tail to the new node

self.head self.head.backward

new_node

dlil Lo 1o o

<= oo '

? [J

e
——7t e
+——eo

O=00 0D~ [<
O =000 =
O=00 0D =
O =00 0D =
O=00 0D
O=00 0O
O=00 0D

self.head self.head.backward

new_node

dll T o *F—tlo o] F— o] 4|0 T—4= |9

O =000 =

O=00 0D =~ [
0O =~000® =
O =000 =
O =000~ <
O—=000 =~ [
O=000 =~ <

Double Linked List

e Set new node forward to self.head

self.head self.head.backward

new_node
a o ..\Q dll O’Q/. ° "Q/O ° .’Q/O ° rQJ ’
A A A
/—‘rg r r r r r '
e e e e e e e
c o} c o} c c c
o o o) o o o o)
r r r r r i r
d d d d d d d
-, ___/ ___J ___/ ___J ___J __J
self.head self.head.backward
new_node
’ g dll ’ of—__ote | 4 rQ) Y rQ/. ° "Q/O 'Y rQ/. °
,L L L L L L
. r r r r r r
e e e e e e e
c c c c c c c
o o o o o o) o
r r r r r r r
d d d d d d d
-, N -/ N -/ -/ -/

Double Linked List

e Set new node.backward to the tail

self.head self.head.backward
new_node
é i r/%l' T o] oo o] F—42|o| F—24=|o| “T—2f= | 9|
l V V V V %
—) o)) TN N
r r r r r r r
e e e e e e e
c c c c c c c
o o o o o o o
r r r ' ' '
d d d d d d

Double Linked List

o Set self.head.backward to new node

eeeeeeeee

Double Linked List

e Finally, set dll.head to the new_node

\ self.head self.head.backward
new_node O o=l ol ol ol ™ [3
- r r r r r r
e e e e e e e
c c c © c c c
o o] o] o o o o
r r r r r r r
d d d d d d d

Double Linked List

e Code:
e QOrder is important!

e Easy part: inserting into an empty list

def 1nsert head(self, record): dw_i%iil__

new node = Node (record)

1f not self.head:
self.head = new node
new node.forward = new node
new node.back = new node

[Q_ﬂOOCDﬂ}

Double Linked List

e QOrder of operations is important!

e Otherwise, we loose access or need a temporary

variable
def 1nsert head(self, record):
new node = Node (record)

if not self.head:

else:
self.head.back.forward = new node
new node.back = self.head.back
self.head.back = new node
new node.forward = self.head
self.head = new node

self.head self.head.backward
[+]

lll@lll@lll@lll@lll@» l;

Double Linked List

* Printing all records from left to right

e Usethe current node paradigm:

def print 1t forward(self):
current = self.head
while current:
print (current.record)
current = current.forward
1f current == self.head:
return

Double Linked List

* Printing all nodes from right to left

¢ def print 1t backward(self):
current = self.head.back
while current:
print (current.record)
current = current.back
1f current == self.head.back:
return

Double Linked List

 We can also build an explicit iterator class
e |terators
* provide access to the record
e allow us to move to the next record
e allow us to move to the previous record

e can compare two iterators

Double Linked List

* |mplementation

class DLL Iterator:
def 1nit (self, dll):
self.current node = dll.head
self.dll = dll
def forward(self):

self.current node = self.current node.forward
def backward(self) :
self.current node = self.current node.back

def get record(self):
return self.current node.record
def at tail (self):

return self.current node == self.dll.head.back
def at head(self):
return self.current node == self.dll.head
def eq (self, other):
return self.dll == other.dll and self.current node ==

other.current node

Double Linked List

e Example based on iterator

it = DLL Iterator(dll)
while True:
print (1t.get record())
1it.forward ()
1f 1t.at head():
break

Double Linked List

e Homework:

e Add to the iterator class to set an iterator to the tall

Double Linked List

 Maintaining an ordered double linked list

 Add a field key to the Node class

class Node:
def 1nit (self, my record, key):
self.forward = None
self.back = None
self.record = my record
self.key = key

Double Linked List

e Only difference:
* Now need to insert in the middle of a list
* One special case:
* |nserting in an empty list
* Normal case
* |nserting between two nodes

e which can be identical

Double Linked List

e Special case:

e |f the list is empty, self.nead is None

class OLL:
"""Implements an ordered list of double linked nodes """
def 1nit (self):
self.head = None

Double Linked List

e Special case:
e |f the list is empty, self.nead is None

* Do not forget to set the forward and back pointers

class OLL:
"""Implements an ordered list of double linked nodes """
def 1nsert(self, my record, my key):
new node = Node (my record, my key)
1f self.head:
else:
self.head = new node
new node.forward = new node
new node.back = new node

Double Linked List

odl\\
| else:
7k| self.head = new node

5
[fj new node.forward = new node

new node.back = new node

Double Linked List

* Inserting between two nodes

 Implement as a class (not instance) method

* Reset four pointers

B
ZWEQT*T*Q*T*Q*@
g U 8 g

Double Linked List

i —

S

U U U

LAIEIAY

[5 def 1nsert before after (new node, left, right):
left.forward = new node
new node.back = left
new node.forward = right
right.back = new node

Double Linked List

* Need to find the insertion point:

e Slightly tricky, because if the inserted key is larger than
the present key, we do not want to circle around

e Special case: The key to be inserted is smaller, so the
new node becomes the head.

e |n which case we insert between the head and
head.back

 Even if they are the same node

Double Linked List

e Special case if we insert at the beginning, because we
then need to reset self.head

* Notice that it says OLL.insert_before_after because this
IS a class method

1f self.head:
current node = self.head
if my key < self.head.key:
OLL.1insert before after (new node,
self.head,
self.head.forward)
self.head = new node

Double Linked List

e Otherwise, we need to find the insertion point
e Start out with current_node = self.head

 Then move to the right until current_node.forward has a
larger key

* This gives us the insertion point

Double Linked List

* Finding the insertion point

* Already excluded that we need to insert before the head

current

newnode

e key is 35, which is more than current.forward.key

e Move current to the left

Double Linked List

* Finding the insertion point
e current.forward.key is 30 is
e still less than 35

* Mmove

Double Linked List

* Finding the insertion point:

e But not any longer: current.forward.key is 40

Double Linked List

* Finding the insertion point
* Now we have found the insertion point

e |nsert between current and current.forward

(@@

current

newnode

Double Linked List

 Found the insertion point and inserted

<,>. > 20 4—& /.4)

newnode 0—l>

Double Linked List

 Walk through the list

e (Can but not have to use iterators

def show(self):
1f not self.head:
print ('empty')

return
print (self.head.key, self.head.record, sep=': ")
current node = self.head.forward
while current node != self.head:

print (current node.key, current node.record, sep= ': ')
current node = current node.forward

Double Linked List

e Deleting a record

e Need to find the record first

* Then delete the node
e Special case:
 This is the only node

* |n which case forward and back pointer point
to the same node

Double Linked List

* Deleting a node from several nodes:

odll n\ Current_nodet/o be deleted
R 1 = e = T B
Qﬁ? | 1 1T
U J g

current_node to be deleted

\ f

|]
%ﬁj@@fﬁ@ﬂ%@%ﬁ

U U 0

Double Linked List

* Deleting the only node

e Just set self.head to None

def delete(self, key):
current node = self.head
1f current node.forward == current node:
there 1is only one node left
self.head = None

Double Linked List

e Otherwise:

e Use the current_node pointer (effectively an iterator) in
order to find the node to be deleted

e But be careful, because the key might not be there

e After going to the next node, check that we are not
at the beginning

Double Linked List

def delete(self, key):
current node = self.head
1f current node.forward == current node:
there 1is only one node left
self.head = None

return
while True:
if current node.key == key:
self.delete node (current node)
return
else:

current node = current node.forward
#Check that we have not reached the beginning of the 1ist
if current node == self.head:
return

Double Linked List

 Deletion itself is fairly simple

def delete node(self, current node):
1f self.head == current node:
self.head = current node.forward
left = current node.back
right = current node.forward
S left.forward = right
Ow\ wmmm?e%m right.back = left

I e I ﬁ *b

— — —

current_node to be deleted

Ay
odll \ V}/
S —

TR 4

1 ™

(
(
(

Double Linked List

e But needs to take care of the case where we delete the
head of the list

* Though we can verify that we only need to reset head.

def delete node(self, current node):

if self.head == current node:
self.head = current node.forward

left = current node.back

right = current node.forward

left.forward = right
right.back = left

Double Linked List

* Performance
e Storage costs
 Python is generous with using storage
 Each object has a number of fields

* |f we implement in a high performance language
like C

 Per record, need a node with three pointers

e 3*32 or 3*64 bits = 12B, 24B per object

Double Linked List

 Timing measured in number of nodes
 Double linked list as a Stack
e insert/ delete at head (1 node)
e Double linked list as a Queue
e insert at head / delete at tail (1 / 2 nodes)
e insert at tail / delete at head (2 / 1 nodes)

e Sometimes Stack and Queue are combined in a single
structure: Deque

Double Linked List

e Performance
e Ordered linked list:

* Finding a record, inserting a record, deleting a record

e Timing is n/2 nodes on average

Software Engineering

* This is highly non-trivial code

e | know because of the mistakes that | make

Software Engineering

* Two core problems of Software Engineering:

* How to get people to work on code together
successfully

MYTHICAL
MAN-MONTH

Software Engineering

e Second problem:
e How can we guarantee correctness of code
* Formal methods

 Not popular because very difficult

e TJesting

e Difficult because we need to test for all things that
are likely to go wrong

Software Engineering

* TJest generation:
* Think about all things that could have an influence

* E.g. node deletion: location of node with respect to other
nodes

* Lonely node

* Node at the beginning
* Node at the end

* Node in the middle

e Node first after head

Software Engineering

e Test Generation:

e Write a test for all of these cases

Software Engineering

e |dea of unit tests
e Divide tasks into modules

* Implementing a cyclical ordered linked list would be
a module

* Modularization:
* Makes design easier
* Allows small groups to generate software

e (Can test already at the unit level

Software Engineering

e Unit tests in Python

 Can have code that only executes if the module is the one that is
called

e But not if the module is imported

if name == ' main ':

oll = OLL ()

oll.insert('z',1)

oll.insert ('a', 100000)

oll.insert ('d', 2)

oll.insert('e', 3)

for 1in range(10):
X = random.getrandbits (16)
print (x)

oll.insert(3*str(x),x)
oll.show ()

Software Engineering

* One of the big problems is software maintenance

 The programmer or someone else will add functionality
and / or change the implementation

* A simple code addition can break code elsewhere
* Therefore:

e Test the interface in the unit test

e So that an addition / modification that breaks an
interface can be caught

Software Engineering

* Hence:
e TJest your algorithms
By making all case distinction
 And verifying your code with paper and pencil

* This is formal method (very) light

Software Engineering

* Hence:
e Jest your implementation
By making all case distinctions
 And writing test code for them

e Even better: print out what the result of your
test should be

Software Engineering

e What to do when you detect an error
e READ the ERROR MESSAGE
* |dentify the location of the fault

* The error happened there or before on the execution
path

 Adorn your code with additional print statements

 Jo help you locate the statement that causes the
error

Software Engineering

 What type of errors should you expect:

* [ypos and similar mechanical errors that are not
detected by the Ul

* Violated assumptions

* You deal with that by making your assumptions
explicit

* You do not need to write them down, just
acknowldge them

Software Engineering

* Debugging is more of an art than science

 EXxperience helps a lot

