
Linked Lists
Thomas Schwarz SJ

Linked Lists
• Effective container data structure

• Container ADT:

• Insert, Update, Read, Delete records

• Records can be anything

• e.g. strings

• e.g. BLOBs (binary large objects)

Linked Lists
• Linked Lists consists of Nodes

• Nodes are connected by forward pointers

• And have pointers to the record contents

• Pointers: Addresses of objects in memory

• This is how Python finds objects

• E.g. if you define a class without __str__ and __repr__ dunder,
this is how an instance will be printed

• It prints the id of the object

• CPython: Guaranteed to be the memory location

• Unless ...

Linked Lists
>>> class X:
 def __init__(self):
 self.x = 0

>>> x=X()
>>> print(x)
<__main__.X object at 0x7facf6f1cee0>
>>>

Linked Lists
• Implementing a node

• Need fields for

• next node (by default Null)

• object stored in linked list

Linked Lists
class Node:
 def __init__(self, my_record):
 self.next_node = None
 self.record = my_record

Linked Lists
class Node:
 def __repr__(self):
 string = "Class Node "
 string += str(id(self))
 string += ", next is " + str(id(self.next_node))
 string += ", record is " + str(self.record)
 return string
 • We use the id-trick in order to find the memory address of

the nodes in CPython

Linked Lists
• Next task is to link the nodes

• A linked list is given by its initial node, the head

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

Linked Lists
• To create a linked list:

• Create a pointer to null

Linked List

None

class Linked_List:
 def __init__(self):
 self.head = None

Linked Lists
• We insert at the front of a linked list

• Step 1: We create a node that points to the record that
we want to insert

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Step 1

Linked Lists
• Step 2: We have the new node point to the same node as

the linked list does

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

Step 2

Linked Lists
• Step 3: We reset the head of the linked list

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

Step 3

Linked List
• Python Code

class Linked_List:
 ...
 def insert(self, record):
 new_node = Node(record)
 new_node.next_node = self.head
 self.head = new_node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Step 1

Linked List
• Python Code

class Linked_List:
 ...
 def insert(self, record):
 new_node = Node(record)
 new_node.next_node = self.head
 self.head = new_node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

Step 2

Linked List
• Python Code

class Linked_List:
 ...
 def insert(self, record):
 new_node = Node(record)
 new_node.next_node = self.head
 self.head = new_node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

Step 3

Linked List
• Why do we execute Step 2 before Step 3

• Many programming languages support threads

• Independent streams of instructions accessing the
same memory structure

• Not really well implemented in Python

• If we set the head to the new node, there is a moment
where the linked list only contains the new node

Linked List
• Doing Step 3 before Step 2 leads to a temporary bad

state

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Linked List
• Printing out the contents of a linked list

• Idea: Create a node pointer current

• Let current walk through the list of nodes

• At each step, print out the contents of the record

Linked List
• Set current_node to the head

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
• Set current_node to current_node.next_node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
• And so on

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
• Until we hit the end, i.e. until current_node becomes
None

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
• Python code:

• Use a current_node pointer

• Adjust current_node pointer to
current_node.next_node

• Repeat until current_node becomes None

def __str__(self):
 output = '['
 current_node = self.head
 while current_node:
 output += str(current_node.record) + ', '
 current_node = current_node.next_node
 return output + ']'

Linked List
def __str__(self):
 output = '['
 current_node = self.head
 while current_node:
 output += str(current_node.record) + ', '
 current_node = current_node.next_node
 return output + ']'

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
def __str__(self):
 output = '['
 current_node = self.head
 while current_node:
 output += str(current_node.record) + ', '
 current_node = current_node.next_node
 return output + ']'

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
def __str__(self):
 output = '['
 current_node = self.head
 while current_node:
 output += str(current_node.record) + ', '
 current_node = current_node.next_node
 return output + ']'

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List
current

Linked List
• Deleting from a linked list

• We need to reset the next link of the node to the right of the
one to be deleted

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

B
L
O
B

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

B
L
O
B

Linked List
• To do so, we need to look ahead

• We use a current_node pointer as usual

• We advance, until current_node.next_node.record has
the record to be deleted.

Linked List

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

B
L
O
B

current_node

current_node.next_node

current_node.next_node.record

Linked List
• There are a number of special cases

• The linked list is empty

• The record to be deleted is in the first node

• The record to be deleted does not exist

• The record to be deleted is in the last node

• This is actually not a problem

• You need to check your algorithm with all these cases

Linked List
• Another problem:

• Should we return a value

• One possibility:

• Return True if we remove a record

• Return False if we do not, because there was no
such record

Linked List
• If the linked list is empty, return False

def remove(self, record):
 if not self.head:
 return False

Linked List
• current_node points to the node before the one to be

deleted

• This is impossible if the record is in the first node
if self.head.record == record:
 self.head = self.head.next_node
 return True

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

B
L
O
B

Linked List
• If the record is not there, we just run out of nodes

• We need to be careful: we cannot check for a record in a
node that is not there

• This is an important trick:

• We first check that current_node.next_node exists

• And then current_node.next_node.record

current_node = self.head
 while current_node.next_node and
current_node.next_node.record != record:
 current_node = current_node.next_node

Linked List
• We run out of nodes when next_node is None

• But otherwise, we have identified the deletion point and
now can delete

if not current_node.next_node:
 return False
else:
 current_node.next_node =
 current_node.next_node.next_node

Linked List

 def remove(self, record):
 if not self.head:
 return False
 if self.head.record == record:
 self.head = self.head.next_node
 return True
 current_node = self.head
 while current_node.next_node and current_node.next_node.record !=
 record:
 current_node = current_node.next_node
 if not current_node.next_node:
 return False
 else:
 current_node.next_node = current_node.next_node.next_node

Linked List as Stack
• We insert at the head of the linked list

• Why don't we pop at the head of the linked list?

• This implements a stack as a linked list

Linked List as Stack
• Idea:

• Remove leading node

Linked List as Stack
• Step 1:

• Safe guard the record

• In self.head.record

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

record

Linked List as Stack
• Step 2:

• Reset self.head to the next node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

record

Linked List as Stack
• Automatic:

• There are no links to the previous head

• The Garbage collection can remove the node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

record

Linked List as Stack
• Python code:

• Add error handling if the linked list is empty

def pop(self):
 if not self.head:
 raise ValueError('Popping from empty stack')
 record = self.head.record
 self.head = self.head.next_node
 return record

Linked List as Queue
• Now we need to either pop at the tail or push at the tail

• Push at the tail

• Idea: Have a current node pointer walk through the
list

• Check if the current.next_node is None

• If it is: This is the last node and we insert the new
node there

Linked List as Queue
• Create a new node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Step 1

Linked List as Queue
• Adjust current to find the last node in the linked list

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Step 2

current

Linked List as Queue
• Reset the next_node in the current node

None

B
L
O
B

B
L
O
B

B
L
O
B

B
L
O
B

Linked List

B
L
O
B

None

Step 3

current

Linked List as Queue
• Create new node

def push(self, record):
 new_node = Node(record)
 if not self.head:
 self.head = new_node
 return
 current_node = self.head
 while current_node.next_node:
 current_node = current_node.next_node
 current_node.next_node = new_node

Linked List as Queue
• Special case:

• The linked list is empty

def push(self, record):
 new_node = Node(record)
 if not self.head:
 self.head = new_node
 return
 current_node = self.head
 while current_node.next_node:
 current_node = current_node.next_node
 current_node.next_node = new_node

Linked List as Queue
• Set current_node to the beginning of queue

• Then move until current_node.next_node is None

def push(self, record):
 new_node = Node(record)
 if not self.head:
 self.head = new_node
 return
 current_node = self.head
 while current_node.next_node:
 current_node = current_node.next_node
 current_node.next_node = new_node

Linked List as Queue
• Now, current_node is pointing to the last node

• So we can connect it to the new node

 def push(self, record):
 new_node = Node(record)
 if not self.head:
 self.head = new_node
 return
 current_node = self.head
 while current_node.next_node:
 current_node = current_node.next_node
 current_node.next_node = new_node

Ordered Linked List
• A different type of records:

• Key and rest of record

• Example: customer data is organized by giving the
customer a unique identifier

• We look up customer data by using the unique ID

• Ordered Linked List:

• Linked list where records are ordered by a key

Ordered Linked List
• Have a node structure that has both key and record

• k1 < k2 < k3 < k4

• Advantage: Avoid records that duplicate the key

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

Ordered Linked List
• Modify the current node structure to have a key

class Node:
 def __init__(self, key, my_record):
 self.key = key
 self.next_node = None
 self.record = my_record
 def __repr__(self):
 string = "Class Node "
 string += str(id(self))
 if self.next_node:
 string += ", next is " + str(id(self.next_node))
 else:
 string += ", end node "
 string += ", record is " + str(self.record)
 string += ", key is " + str(self.key)
 return string

Ordered Linked List
• We implement an Ordered Linked List as a class

• Initially empty

class OLL:
 def __init__(self):
 self.head = None

Ordered Linked List
• The linked list assures that the keys increase as we move

from the head to the tail

• This is done by careful structuring of the insert function

Ordered Linked List
• First exceptional case:

• The list is empty

• Then just make the new_node the head

key
record
next_node

oll

new_node

key
record
next_node

oll

Ordered Linked List
• Python Code

• The list is empty if self.head is None

def insert(self, key, record):
 new_node = Node(key, record)
 if not self.head:
 self.head = new_node
 return

Ordered Linked List
• Second special case:

• The new key is the smallest and we need to insert at
the beginning

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k1

current_node

Ordered Linked List
• Need to change two pointers

• oll needs to point to the new node

• new_node needs to point to the old oll.head

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k1

current_node

Ordered Linked List
elif key < self.head.key:
 new_node.next_node = self.head
 self.head = new_node
 return

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k1

current_node

Ordered Linked List
• Normal case: We insert in the middle

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k3

current_node

Ordered Linked List
• Normal case: We insert in the middle

• Need to change two pointers

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k3

current_node

Ordered Linked List
• Trick:

• Do not loose access, therefore set the pointer in
new_node first

Ordered Linked List
else:
 current_node = self.head
 while current_node:
 if current_node.next_node and key < current_node.next_node.key:
 new_node.next_node = current_node.next_node
 current_node.next_node = new_node
 return
 current_node = current_node.next_node

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key < k3

current_node

Ordered Linked List
• Final case: The new key is the largest and we need to

insert at the end

• This can be achieved with the previous code

• But if current_node points to the last node

• Then current_node.next_node is None

Ordered Linked List

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key > k4 current_node

Ordered Linked List
• Resetting new_node.next_node to current_node.next

does not cause any harm

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

key
record
next_node

new_node

key > k4

current_node

Ordered Linked List
• We need to add one clause to the if statement:

• if current_node.next == None

Ordered Linked List

else:
 current_node = self.head
 while current_node:
 if (not current_node.next_node or
 current_node.next_node and key <
 current_node.next_node.key):
 new_node.next_node = current_node.next_node
 current_node.next_node = new_node
 return
 current_node = current_node.next_node

Ordered Linked List
• How do we delete a record by key

• Case 1: Deleting first record

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

Ordered Linked List

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

def delete(self, key):
 if not self.head:
 return False
 elif self.head.key == key:
 self.head = self.head.next_node
 return True

Ordered Linked List
• Deletion by key:

• Find the node before the node with the key

• Reset the next-node link in that node

• Special cases:

• the list is empty: return False

• the node to be deleted is the first:

• Reset the list.head to the next node and return True

Ordered Linked List
• Delete first node:

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

Ordered Linked List
• Common case: Delete in the middle or at the tail

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

Delete k3

current_node

k1
record
next_node

oll k2
record
next_node

k3
record
next_node

k4
record
next_node

Delete k3

current_node

Ordered Linked List
• If we fall of the end of the list:

• key was not present: return False

Ordered Linked List
• Homework

 def delete(self, key):
 if not self.head:
 return False
 elif self.head.key == key:

 return True
 else:
 current_node = self.head
 while current_node:
 if current_node.next_node and key == current_node.next_node.key:

 elif not current_node.next_node:
 return False
 current_node = current_node.next_node
 return False

