Linked Lists

Thomas Schwarz SJ

Linked Lists

o Effective container data structure
e Container ADT:
* |nsert, Update, Read, Delete records
 Records can be anything
* e.g. strings

 e.g. BLOBs (binary large objects)

Linked Lists

* Linked Lists consists of Nodes
* Nodes are connected by forward pointers
* And have pointers to the record contents
* Pointers: Addresses of objects in memory
* This is how Python finds objects

 E.g.if you define a class without __str__and __repr__ dunder,
this is how an instance will be printed

e |t prints the id of the object
e CPython: Guaranteed to be the memory location

e Unless ...

Linked Lists

>>> class X:
def init (self) :

self.x = 0

>>> x=X ()

>>> print (x)

< main .X object at 0Ox7facfoflceel>
>>2>

Linked Lists

* Implementing a node
* Need fields for
e next node (by default Null)

e object stored in linked list

Linked Lists

class Node:

def 1nit (self, my record):
self.next node = None

self.record = my record

Linked Lists

def repr (self) :

string = "Class Node "

string += str(1d(self))

string += ", next 1s " + str(id(self.next node))
string += ", record 1s " + str(self.record)

return string

e We use the id-trick in order to find the memory address of
the nodes in CPython

Linked Lists

e Next task is to link the nodes

* Alinked list is given by its initial node, the head

Linked List

N

wOrw

Orrw

Orrw

W Orrw

None

Linked Lists

e To create a linked list:

e Create a pointer to null
Linked List class Linked List:

def 1nit (self):
self.head = None

None

Linked Lists

e \We insert at the front of a linked list

e Step 1: We create a node that points to the record that
we want to insert

Step 1

Linked List

\' By VREN g I I WEE Ty

WOrw
WOrw
WOrw
WOrw
WOrw

Linked Lists

e Step 2: We have the new node point to the same node as
the linked list does

Step 2

W Orw
W Orw
W Orw
W Orw
o Orw

Linked Lists

e Step 3: We reset the head of the linked list

Step 3

Linked List

'

[WOrw]4——
WOrw]
WOrrw]4—
W Orw J

[WOrmw]4——

Linked List

e Python Code

class Linked List:

def i1nsert(self, record):
new node = Node (record)
new node.next node = self.head
Step self.head = new node

Linked List

N

N e T g TR O e 1 L1

None None

WOrw

—
—
—

e

|

Linked List

e Python Code

class Linked List:

def 1nsert(self, record):

new node = Node (record)
ton new node.next node = self.head
self.head = new node

Linked List

N

4 e —— —— ———;

None

[WOrw }4——
WOrw }
WOrw }‘———
WOrw }

{wOrw:}———

Linked List

e Python Code

class Linked List:

def 1nsert(self, record):
new node = Node (record)
Step 3 new node.next node = self.head

self.head = new node
Linked List -

A
BEEE:

None

[W Orw J<t————-
WOrw J
WOrw J
WOrrw J
WOrrw J

Linked List

 Why do we execute Step 2 before Step 3
* Many programming languages support threads

* |Independent streams of instructions accessing the
same memory structure

* Not really well implemented in Python

e |f we set the head to the new node, there is a moment
where the linked list only contains the new node

Linked List

 Doing Step 3 before Step 2 leads to a temporary bad

state
Linked List
| o B | o B— | | ——¢ | ——¢
l None N
N N Y Y SN
B B B B B
L L L L L
@) @) O O @)
B B B B B
\— \/

Linked List

* Printing out the contents of a linked list
e |dea: Create a node pointer current
e Let current walk through the list of nodes

e At each step, print out the contents of the record

Linked List

e Set current node to the head

Linked List

N\

current

| |

B B

L L

@) O

B B
__/ \—___/

WOrw

None

Linked List

e Set current nodeto current node.next node

Linked List

N

current

1l

WOrw

WOrw

WOrw

None

e And so on

Linked List

AN

Linked List

current

WOrw

WOrw

N

——p

WOrrw

WOrw

None

Linked List

e Until we hit the end, i.e. until current node becomes
None

current
Linked List

| —-+—> | > |
l None

Y N N -

B B B B

L L L L

@) @) @) @)

B B B B
\

Linked List

e Python code:

e Usea current node pointer

e Adjust current node pointer to
current node.next node

e Repeat until current node becomes None

def str (self):
output = "['
current node = self.head
whille current node:
output += str(current node.record) + ', '
current node current node.next node

return output + ']'

Linked List

deft str (self):
output = '['
current node = self.head
while current node:
output += str(current node.record) + ', '
current node current node.next node

return output + ']

current
Linked List

\

—+—> —+—> —p ——¢
None

r—!—“\ r—!—“\ f_!_“\ (’_!_\

B B B B

L L L L

@) O @) O

B B B B
x___J ___ __ ___

Linked List

deft str (self):
output = '['
current node = self.head
while current node:
output += str(current node.record) + ', '
current node current node.next node

return outpﬁf + ']

current

Linked List l

—— b —— ——¢

bl

WOrw
WOrw
WOrw
WOrw

Linked List

deft str (self):
output = '['
current node = self.head
while current node:
output += str(current node.record) + ', '
current node = current node.next node

return outpﬁf + ']

current

Linked List \

I I I I
l l None

)) 7))

B B B B

L L L L

@) O @) @)

B B B B
N

Linked List

e Deleting from a linked list

* We need to reset the next link of the node to the right of the
one to be deleted Linked List

Linked List

Linked List

e Jo do so, we need to look ahead
* \We use a current_node pointer as usual

e We advance, until current_node.next_node.record has
the record to be deleted.

Linked List

N

o Orw

Linked List

current_node

WOrw

—

WOrw

current_node.next_node

WWOrw

current_node.next_node.record

owOrw

None

Linked List

* There are a number of special cases

 The linked list is empty

* The record to be deleted is in the first node

* The record to be deleted does not exist

 The record to be deleted is in the last node
* This is actually not a problem

* You need to check your algorithm with all these cases

Linked List

* Another problem:
e Should we return a value
* One possibility:
 Return True if we remove a record

e Return False if we do not, because there was no
such record

Linked List

e |f the linked list is empty, return False

def remove (self, record):
1f not self.head:
return False

Linked List

e current node points to the node before the one to be
deleted

* This is impossible if the record is in the first node

1f self.head.record == record:
self.head = self.head.next node
return True

T

Linked List

N

WOrw
WOrw
WOrw
WOrw
WOrw

Linked List

* |f the record is not there, we just run out of nodes

e \We need to be careful: we cannot check for a record in a
node that is not there

current node = self.head
while current node.next node and
current node.next node.record != record:
current node = current node.next node

 This is an important trick:
e \We first check that current node.next node exists

e And then current node.next node.record

Linked List

e We run out of nodes when next node IS None

 But otherwise, we have identified the deletion point and
now can delete

1f not current node.next node:
return False
else:
current node.next node =
current node.next node.next node

Linked List

def remove(self, record):
1f not self.head:
return False
1f self.head.record == record:
self.head = self.head.next node
return True

current node = self.head
while current node.next node and current node.next node.record !=
record:
current node = current node.next node

1f not current_node.next_ngde:
return False

else:
current node.next node = current node.next node.next node

Linked List as Stack

e We insert at the head of the linked list
* Why don't we pop at the head of the linked list?

* This implements a stack as a linked list

Linked List as Stack

e |dea:

* Remove leading node

Linked List as Stack

e Step 1:
e Safe guard the record

e Inself.head.record

Linked List

. . .
| | | | ;
l l No
)) R)
B B B B
(O e—y | L L L L
o) o) o) O
B B B B
\/

Linked List as Stack

e Step 2:

e Reset self.head to the next node

Linked List

WOrw

WOrw

[woro }__

Linked List as Stack

e Automatic:

* There are no links to the previous head

» The Garbage collection can remove the node

Linked List

IR

WOrw
WOrmw
WOrmw
WOrmw

Linked List as Stack

 Python code:
 Add error handling if the linked list is empty

def pop(self):
1f not self.head:
ralse ValueError ('Popping from empty stack')
record = self.head.record
self.head = self.head.next node
return record

Linked List as Queue

* Now we need to either pop at the tail or push at the talil

e Push at the tall

e |dea: Have a current node pointer walk through the
list

e Checkifthe current.next node is None

e [fitis: This is the last node and we insert the new
node there

Linked List as Queue

e Create a new node

Linked List
I I I I None l None
)
B B B B
L L L L

Linked List as Queue

e Adjust current to find the last node in the linked list

WOrw
WOrw
WOrw
WOrw
WOrw

Linked List as Queue

e Reset the next node in the current node

WOrw
WOrw
WOrw
WOrw
WOrw

Linked List as Queue

e Create new node

def push(self, record):
new node = Node (record)
1f not self.head:
self.head = new node
return
current node = self.head
whille current node.next node:
current node = current node.next node
current node.next node = new node

Linked List as Queue

e Special case:

* The linked list is empty

def push(self, record):
new node = Node (record)
if not self.head:
self.head = new node
return
current node = self.head
whlile current node.next node:
current node = current node.next node
current node.next node = new node

Linked List as Queue

e Set current node to the beginning of queue

e Then move until current node.next node is None

def push(self, record):

new node = Node (record)

1f not self.head:
self.head = new node
return

current node = self.head
while current node.next node:

current node = current node.next node
current node.next node = new node

Linked List as Queue

* Now, current_node is pointing to the last node

e S0 we can connect it to the new node

detf push(self, record):

new node = Node (record)
1f not self.head:
self.head = new node
return
current node = self.head
whille current node.next node:
current node = current node.next node

current_node.next_node = new_node

Ordered Linked List

* A different type of records:

 Key and rest of record

e Example: customer data is organized by giving the
customer a unique identifier

* We look up customer data by using the unique ID

e QOrdered Linked List:

e Linked list where records are ordered by a key

Ordered Linked List

* Have a node structure that has both key and record

oll > k1

3

® k1 < k2 < k3 < k4

e

3

e |

3

 Advantage: Avoid records that duplicate the key

Ordered Linked List

 Modify the current node structure to have a key

class Node:

def 1nit (self, key, my record):
self . key = key
self.next node = None

self.record = my record
def repr (self):

string = "Class Node "

string += str(id(self))

1f self.next node:

string += ", next is " + str(id(self.next node))
else:

string += ", end node "
string += ", record 1s " + str(self.record)

string += ", key 1s " + str(self.key)
return string

Ordered Linked List

e We implement an Ordered Linked List as a class
e |nitially empty
class OLL:

def 1nit (self):
self.head = None

Ordered Linked List

* The linked list assures that the keys increase as we move
from the head to the tail

* This is done by careful structuring of the insert function

Ordered Linked List

* First exceptional case:

 The list is empty

* Then just make the new_node the head

Ordered Linked List

e Python Code

 The list is empty if self.nead is None

def insert(self, key, record):

new node = Node (key, record)
1f not self.head:
self.head = new node

return

Ordered Linked List

e Second special case:

* The new key is the smallest and we need to insert at

the beginning new_gode

key
record
next node *

@ key < k1l

current_node

X

oll k1l k2 k3 k4
record P> record P> record P> record
next node

next node

next node

3

next node

)

oll

Ordered Linked List

* Need to change two pointers

e oll needs to point to the new node

* new_node needs to point to the old oll.head

new_node

\

key
P> record

next node

oo k1
—p>| record

—P> record

next node

current_node

X

k2

next node

>

v
key < k1l
k3 k4
record > record
next node next node

Ordered Linked List

elif key < self.head.key:
new node.next node =
self.head = new node
return

self.head

new_node

\

key
> record
next node

v

O key < kil

current_node

X

oll

k1
record

next node

E—

B

k2

record
next node

3

D>

k3

record
next node

L

3

>

k4

record
next node

oll

Ordered Linked List

> k1

record

next node

new_node

\

key
record

¢ Normal case: We insert in the middle

next node

current_node

X

k2

record
next node

v

@ key < k3

3

>

k3

record
next node

>

)

k4

record
next node

oll

Ordered Linked List

¢ Normal case: We insert in the middle

* Need to change two pointers

new_node

\

> k1
record

next node

current_node

X

k2

—P> record

next_n

key < k3
key
record
next node - [---- ,
Y
@ l—‘L
k3

ode -

record
next node

>

k4

record
next node

Ordered Linked List

e Trick:

* Do not loose access, therefore set the pointer in
new_node first

Ordered Linked List

else:
current node = self.head
while current node:
1f current node.next node and key < current node.next node.key:

new node.next node = current node.next node
current node.next node = new node
return
current node = current node.next node
new_node
* key < k3
key
> record
next node |- ;
7
v
current_node D
X
)| I — k2 k3 k4
r rd |—> r rd e > r rd —>| ¢ rd
ngiz_node ngii_node- ------ l niiz_node —,_ niii_node *
v \'4 \'4

| | | |

Ordered Linked List

 Final case: The new key is the largest and we need to
insert at the end

* This can be achieved with the previous code

e Butif current node points to the last node

e Then current node.next node IS None

oll

Ordered Linked List

> k1

record

new_node

\

key
record

next node

>

next node

k2

key > k4

record
next node

>

k3

record
next node

Cu

rrent_node

>

k4

record
next node

Ordered Linked List

 Resetting new_node.next_node to current_node.next
does not cause any harm

oll

new_node

\

>

key
record

next node

v

v

U key > k4

current_node

k1l
record

next node

k2

record
next node

>

k3

record
next node

||

v

_

>

y

record
next node [~

Ordered Linked List

e \We need to add one clause to the If statement:

® 1f current node.next == None

Ordered Linked List

else:
current node = self.head
whille current node:
1f (not current node.next node or
current node.next node and key <
current node.next node.key):

new node.next node = current node.next node
current node.next node = new node
return

current node = current node.next node

Ordered Linked List

* How do we delete a record by key

e Case 1: Deleting first record

oll

detf delete(self,

Ordered Linked List

kevy) :

1f not self.head:
return False

elif self.head.key
self.head

k1l
record

D>

next node

k2

== key:

= self.head.next node
return True

record
next node

>

k3

record

next node

>

k4

record
next node

Ordered Linked List

* Deletion by key:
 Find the node before the node with the key
* Reset the next-node link in that node
e Special cases:
e the list is empty: return False
* the node to be deleted is the first:

e Reset the list.head to the next node and return True

Ordered Linked List

e Delete first node:

Ordered Linked List

e Common case: Delete in the middle or at the talil

Delete k3
current_node
oll > k1 k2 k3 k4
record |—> record P> record P> record
next node next node | next node —J next node
Delete k3
current_node
oll > k1 k2 k3 k4
record |—> record ---}---> record P> record
next node next node ‘ next node —, next node

0 0 C

Ordered Linked List

e |f we fall of the end of the list:

* key was not present: return False

Ordered Linked List

e Homework

def delete(self, key):
1if not self.head:
return False
elif self.head.key == key:

* Kk %

return True

else:
current node = self.head
while current node:
1f current node.next node and key == current node.next node.key:
* Kk Kk %k

elif not current node.next node:
return False
current node = current node.next node
return False

