Thomas Schwarz SJ

- Effective container data structure
  - Container ADT:
    - Insert, Update, Read, Delete records
      - Records can be anything
        - e.g. strings
        - e.g. BLOBs (binary large objects)

- Linked Lists consists of Nodes
  - Nodes are connected by forward pointers
  - And have pointers to the record contents
- Pointers: Addresses of objects in memory
  - This is how Python finds objects
    - E.g. if you define a class without \_\_str\_\_ and \_\_repr\_\_ dunder, this is how an instance will be printed
      - It prints the id of the object
        - CPython: Guaranteed to be the memory location
        - Unless ...

```
>>> class X:
    def __init__(self):
        self.x = 0

>>> x=X()
>>> print(x)
<__main__.X object at 0x7facf6f1cee0>
>>>
```

- Implementing a node
  - Need fields for
    - next node (by default Null)
    - object stored in linked list

```
class Node:
    def __init__(self, my_record):
        self.next_node = None
        self.record = my record
```

```
class Node:
    def __repr__(self):
        string = "Class Node "
        string += str(id(self))
        string += ", next is " + str(id(self.next_node))
        string += ", record is " + str(self.record)
        return string
```

 We use the id-trick in order to find the memory address of the nodes in CPython

- Next task is to link the nodes
- A linked list is given by its initial node, the head



- To create a linked list:
  - Create a pointer to null



```
class Linked_List:
    def __init__(self):
        self.head = None
```

- We insert at the front of a linked list
  - Step 1: We create a node that points to the record that we want to insert

 Step 2: We have the new node point to the same node as the linked list does

Step 2



Step 3: We reset the head of the linked list

Step 3



Python Code

```
class Linked List:
                      def insert (self, record):
                           new node = Node(record)
                           new node.next node = self.head
                           self.head = new node
              Step 1
Linked List
                      None
                                    None
          В
```

Python Code

```
class Linked List:
               def insert (self, record):
                    new node = Node(record)
                    new node.next node = self.head
           Step 2
                    self.head = new node
Linked List
                      None
                    В
               0
                    0
```

Python Code

```
class Linked_List:
    ...
    def insert(self, record):
        new_node = Node(record)
        new_node.next_node = self.head
        self.head = new_node
```



- Why do we execute Step 2 before Step 3
  - Many programming languages support threads
    - Independent streams of instructions accessing the same memory structure
    - Not really well implemented in Python
  - If we set the head to the new node, there is a moment where the linked list only contains the new node

 Doing Step 3 before Step 2 leads to a temporary bad state



- Printing out the contents of a linked list
  - Idea: Create a node pointer current
  - Let current walk through the list of nodes
    - At each step, print out the contents of the record

Set current\_node to the head



• Set current\_node to current\_node.next\_node



And so on



Until we hit the end, i.e. until current\_node becomes
 None



- Python code:
  - Use a current node pointer
  - Adjust current\_node pointer to current node.next node
  - Repeat until current node becomes None

```
def __str__(self):
    output = '['
        current_node = self.head
        while current_node:
            output += str(current_node.record) + ', '
            current_node = current_node.next_node
        return output + ']'
```

```
def __str__(self):
    output = '['
        current_node = self.head
        while current_node:
            output += str(current_node.record) + ', '
            current_node = current_node.next_node
        return output + ']'
```



```
def __str__(self):
    output = '['
        current_node = self.head
        while current_node:
            output += str(current_node.record) + ', '
            current_node = current_node.next_node
        return output + ']'
```



```
def str (self):
        output = '['
        current node = self.head
        while current node:
             output += str(current node.record) + ', '
             current node = current node.next node
        return output + ']'
                          current
             Linked List
```

None

Deleting from a linked list

 We need to reset the next link of the node to the right of the one to be deleted





- To do so, we need to look ahead
  - We use a current\_node pointer as usual
  - We advance, until current\_node.next\_node.record has the record to be deleted.



current\_node.next\_node.record

- There are a number of special cases
  - The linked list is empty
  - The record to be deleted is in the first node
  - The record to be deleted does not exist
  - The record to be deleted is in the last node
    - This is actually not a problem
- You need to check your algorithm with all these cases

- Another problem:
  - Should we return a value
    - One possibility:
      - Return True if we remove a record
      - Return False if we do not, because there was no such record

If the linked list is empty, return False

```
def remove(self, record):
    if not self.head:
        return False
```

- current\_node points to the node before the one to be deleted
- This is impossible if the record is in the first node



- If the record is not there, we just run out of nodes
  - We need to be careful: we cannot check for a record in a node that is not there

- This is an important trick:
  - We first check that current\_node.next\_node exists
  - And then current\_node.next\_node.record

- We run out of nodes when next\_node is None
- But otherwise, we have identified the deletion point and now can delete

- We insert at the head of the linked list
- Why don't we pop at the head of the linked list?
- This implements a stack as a linked list

- Idea:
  - Remove leading node

- Step 1:
  - Safe guard the record
    - In self.head.record



- Step 2:
  - Reset self.head to the next node



- Automatic:
  - There are no links to the previous head
    - The Garbage collection can remove the node



- Python code:
  - Add error handling if the linked list is empty

```
def pop(self):
    if not self.head:
        raise ValueError('Popping from empty stack')
    record = self.head.record
    self.head = self.head.next_node
    return record
```

- Now we need to either pop at the tail or push at the tail
  - Push at the tail
    - Idea: Have a current node pointer walk through the list
    - Check if the current.next node is None
    - If it is: This is the last node and we insert the new node there

Create a new node



Adjust current to find the last node in the linked list



Reset the next\_node in the current node



Create new node

```
def push(self, record):
    new_node = Node(record)
    if not self.head:
        self.head = new_node
        return
    current_node = self.head
    while current_node.next_node:
        current_node = current_node.next_node
    current_node.next_node
```

- Special case:
  - The linked list is empty

```
def push(self, record):
    new_node = Node(record)
    if not self.head:
        self.head = new_node
        return
    current_node = self.head
    while current_node.next_node:
        current_node = current_node.next_node
    current_node.next_node
```

- Set current\_node to the beginning of queue
  - Then move until current node.next node is None

```
def push(self, record):
    new_node = Node(record)
    if not self.head:
        self.head = new_node
        return
    current_node = self.head
    while current_node.next_node:
        current_node = current_node.next_node
    current_node.next_node = new_node
```

- Now, current\_node is pointing to the last node
  - So we can connect it to the new node

```
def push(self, record):
    new_node = Node(record)
    if not self.head:
        self.head = new_node
        return
    current_node = self.head
    while current_node.next_node:
        current_node = current_node.next_node
    current_node.next_node = new_node
```

- A different type of records:
  - Key and rest of record
  - Example: customer data is organized by giving the customer a unique identifier
    - We look up customer data by using the unique ID
- Ordered Linked List:
  - Linked list where records are ordered by a key

Have a node structure that has both key and record



- k1 < k2 < k3 < k4
- Advantage: Avoid records that duplicate the key

Modify the current node structure to have a key

```
class Node:
    def __init__ (self, key, my record):
        self.key = key
        self.next node = None
        self.record = my record
    def repr (self):
        string = "Class Node "
        string += str(id(self))
        if self.next node:
            string += ", next is " + str(id(self.next node))
        else:
            string += ", end node "
        string += ", record is " + str(self.record)
        string += ", key is " + str(self.key)
        return string
```

- We implement an Ordered Linked List as a class
  - Initially empty

```
class OLL:
    def __init__(self):
        self.head = None
```

- The linked list assures that the keys increase as we move from the head to the tail
  - This is done by careful structuring of the insert function

- First exceptional case:
  - The list is empty
    - Then just make the new\_node the head



- Python Code
  - The list is empty if self.head is None

```
def insert(self, key, record):
    new_node = Node(key, record)
    if not self.head:
        self.head = new_node
        return
```

- Second special case:
  - The new key is the smallest and we need to insert at the beginning



- Need to change two pointers
  - oll needs to point to the new node
  - new\_node needs to point to the old oll.head



```
elif key < self.head.key:
    new_node.next_node = self.head
    self.head = new_node
    return</pre>
```



Normal case: We insert in the middle



- Normal case: We insert in the middle
  - Need to change two pointers



- Trick:
  - Do not loose access, therefore set the pointer in new\_node first

```
else:
    current_node = self.head
    while current_node:
        if current_node.next_node and key < current_node.next_node.key:
            new_node.next_node = current_node.next_node
            current_node.next_node
            return
    current_node = current_node.next_node</pre>
```



- Final case: The new key is the largest and we need to insert at the end
  - This can be achieved with the previous code
    - But if current node points to the last node
    - Then current node.next node is None



 Resetting new\_node.next\_node to current\_node.next does not cause any harm



- We need to add one clause to the if statement:
  - if current node.next == None

```
else:
    current_node = self.head
    while current_node:
        if (not current_node.next_node or
             current_node.next_node and key <
             current_node.next_node.key):
             new_node.next_node = current_node.next_node
             current_node.next_node = new_node
             return
        current_node = current_node.next_node</pre>
```

- How do we delete a record by key
  - Case 1: Deleting first record



```
def delete(self, key):
    if not self.head:
        return False
    elif self.head.key == key:
        self.head = self.head.next_node
        return True
```



- Deletion by key:
  - Find the node before the node with the key
  - Reset the next-node link in that node
- Special cases:
  - the list is empty: return False
  - the node to be deleted is the first:
    - Reset the list.head to the next node and return True

Delete first node:



Common case: Delete in the middle or at the tail



- If we fall of the end of the list:
  - key was not present: return False

#### Homework