Homework:

1. Calculate the number of integers in the decimal representation of n^2 , n^3 , 2^n , n!, n^n if n = 100,1000,10,000,100,000,1,000,000. Your answer should be in tabular form. You can make your life easier by using the decadic logarithm in Python. The number of digits in a number x is $\lceil \log_{10}(x) \rceil$ unless the number is a power of 10, in which case you have to add one. $\lceil x \rceil$ is the ceiling of the number x and implemented in Python as math.ceil. Alternatively, you can convert the result into a string and then call len on the string. But be prepared to wait.

	n^2	<i>n</i> ³	2 ⁿ	<i>n</i> !	n ⁿ
100	5	7	31	158	201
1000	7				
10000	9		3011		
100,000	11				500001
1,000,000	13			5565709	600001

- Implement the abstract data type **Counter**. The ADT has operations increment, decrement, is_zero, and get_value. Its implementation has a single value per Counter object, originally
 If you are decrementing a counter with zero value, than the result is still zero. This is a somewhat silly exercise, but you need to provide the following class methods:
 - init
 - repr
 - str
 - get value()
 - increment()
 - decrement()
 - is zero()

Hand in the python code as a single python module with .py extension. Also implement the following test:

```
import random
```

```
my_counter = Counter()
for i in range(5):
    my_counter.increment()
print(my_counter.get_value(), 'should be 5')
for i in range(3):
    my_counter.decrement()
print(my_counter.get_value(), 'should be 2')
for i in range(4):
    my_counter.decrement()
for i in range(4):
    my_counter.increment()
print(my_counter.get_value(), 'should be 4')
random.seed(12345)
```

for i in range(100):
 if random.random()<0.5:
 Counter.increment()
 else:
 Counter.decrement()
print(Counter.get_value())</pre>