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Algorithms +Datastructures = Programs 

N.E. Wirth, 1976

“The power of recursion evidently lies in the possibility 
of defining an infinite set of objects by a finite 
statement. In the same manner, an infinite number of 
computations can be described by a finite recursive 
program, even if this program contains no explicit 
reference.”  



Recursion as a 
Universal Tool

• Recursion possible:


• Solution depends partially on solution(s) to (a) smaller 
problem(s)


• Recursion function consists of 


• Base Case


• Call to function with smaller arguments



Examples for 
Recursion

• Euclidean Algorithm


• Base case: one number is zero


• Recursion: express the problem using smaller numbers


• a > b ⇒ gcd(a, b) = gcd(b, a % b)



Examples of Recursion: 
Efficient Calculations of Powers

• Naive power calculation:


•  


• This uses n multiplications. 


• Can do better by setting acc = x, but that still uses 
 multiplicationsn − 1

def power(x,n): 
   acc = 1 
   for _ in range(n): 
      acc *= x



Examples of Recursion: 
Efficient Calculations of Powers

• There is a better way with recursion


• If  is even, :   is the product of  with itself.


• If n is odd,  :  is 


• This leads to very simple Python code

n n = 2m xn xm

n = 2m + 1 xn xm ⋅ xm ⋅ x



Examples of Recursion: 
Efficient Calculations of Powers

• Direct Python Implementation:

def power(x, n): 
   if n == 0: 
      return 1 
   if n == 1: 
      return x 
   if n%2 == 0: 
      return power(x,n//2)*power(x,n//2) 
   return power(x,n//2)*power(x,n//2)*x



Examples of Recursion: 
Efficient Calculations of Powers

• Why does this work


• A formal proof can assure that we did not make an 
implementation mistake


• Proof is by induction


• Base Cases:  n=0 and n=1 are directly in the code


• Induction Step:  Assume it works for all inputs up to, 
but not including n 

• Need to show that it also works for n



Examples of Recursion: 
Efficient Calculations of Powers

• Case distinction:


• If  is even:


• Then  and the code works


• If  is odd 


• Then  and the code works


• Here, we are using the induction hypothesis

n

xn = xn//2 ⋅ xn//2

n

xn = x ⋅ xn//2 ⋅ xn//2



Examples of Recursion: 
Efficient Calculations of Powers

• As you can see, recursion and induction match each 
other closely



Examples of Recursion: 
Efficient Calculations of Powers

• Performance:


• Best case:  is a power of 2, i.e. 


• By induction: show that the algorithm takes m steps.


• Each step uses one multiplication.


• Total of  multiplications

n n = 2m

m = log2(n)



Examples of Recursion: 
Efficient Calculations of Powers

• Performance:


• Worst case:   is always odd


•   


• Next element in this sequence is calculated from the 
previous:  


• Can prove by induction:


•

n

n = 1,3,7,… = a1, a2, a3, …

aj = 2 ⋅ aj−1 + 1

aj = 2j − 1



Examples of Recursion: 
Efficient Calculations of Powers

• Performance: 


• Worst case: 


• Two multiplications per step


• There are  steps


• Total is  multiplications


• Which is  multiplications

n = 2m − 1

m − 1

2m − 2

2 log2(n) − 2



Examples of Recursion: 
Efficient Calculations of Powers

• Performance:  O(log(n))



Examples of Recursion: 
Efficient Calculations of Powers

• Implementation using binary operations

def power(x, n): 
   if n == 0: 
      return 1 
   if n == 1: 
      return x 
   m = n >> 1 
   r = n&0x01 
   p = power(x,m) 
   if r: 
      return p*p*x 
   return p*p 
      



Examples of Recursion: 
Triominos

• We are given a chess board of size  with one field 
removed.


• Write a program that shows how to tessellate the chess 
board with a triomino 

2m × 2m



Examples of Recursion: 
Triominos

• Notice:


• The chess board has 
 fields.


• A Triomino has three fields


• So, maybe it is possible

2m × 2m ≡ (−1)m × (−1)m ≡ 1 (mod 3)



Examples of Recursion: 
Triominos

• Base Case:


• .  


• A two-by-two chess board has four fields.


• Remove one, and you have a triomino

m = 1



Examples of Recursion: 
Triominos

• Recursion:


• A  chessboard consists of four  
chessboards.


• Take such a board with one field removed.

2m × 2m 2m−1 × 2m−1



Examples of Recursion: 
Triominos

• Divide the board into four equal parts



Examples of Recursion: 
Triominos

• One of them (here the blue one) has the missing field.


• Create a list of triominos that fill this up 



Examples of Recursion: 
Triominos

• Place a Triomino in the middle, cutting out one field from 
each of the other sub-boards.



Examples of Recursion: 
Triominos

• Add this triomino to the list.


• The three remaining boards (green, orange, red) can now 
be covered with triominos


