Recursion

Thomas Schwarz, SJ

"The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement. In the same manner, an infinite number of computations can be described by a finite recursive program, even if this program contains no explicit reference."

ALGORITHMS + DATASTRUCTURES = PROGRAMS

N.E. WIRTH, 1976

Recursion as a Universal Tool

- Recursion possible:
 - Solution depends partially on solution(s) to (a) smaller problem(s)
- Recursion function consists of
 - Base Case
 - Call to function with smaller arguments

- Euclidean Algorithm
 - Base case: one number is zero
 - Recursion: express the problem using smaller numbers
 - $a > b \Rightarrow gcd(a, b) = gcd(b, a \% b)$

Efficient Calculations of Powers

• Naive power calculation:

```
def power(x,n):
 acc = 1
 for _ in range(n):
 acc *= x
```

- This uses *n* multiplications.
- Can do better by setting acc = x, but that still uses
 n − 1 multiplications

- There is a better way with recursion
 - If *n* is even, n = 2m: x^n is the product of x^m with itself.
 - If *n* is odd, n = 2m + 1: x^n is $x^m \cdot x^m \cdot x$
- This leads to very simple Python code

Examples of Recursion: Efficient Calculations of Powers

• Direct Python Implementation:

```
def power(x, n):
 if n == 0:
     return 1
 if n == 1:
     return x
 if n%2 == 0:
     return power(x,n//2)*power(x,n//2)
 return power(x,n//2)*power(x,n//2)*x
```

- Why does this work
 - A formal proof can assure that we did not make an implementation mistake
 - Proof is by induction
 - Base Cases: *n*=0 and *n*=1 are directly in the code
 - Induction Step: Assume it works for all inputs up to, but not including n
 - Need to show that it also works for *n*

- Case distinction:
 - If *n* is even:
 - Then $x^n = x^{n/2} \cdot x^{n/2}$ and the code works
 - If *n* is odd
 - Then $x^n = x \cdot x^{n/2} \cdot x^{n/2}$ and the code works
 - Here, we are using the induction hypothesis

Efficient Calculations of Powers

As you can see, recursion and induction match each other closely

- Performance:
 - Best case: *n* is a power of 2, i.e. $n = 2^m$
 - By induction: show that the algorithm takes *m* steps.
 - Each step uses one multiplication.
 - Total of $m = \log_2(n)$ multiplications

- Performance:
 - Worst case: *n* is always odd
 - $n = 1, 3, 7, \dots = a_1, a_2, a_3, \dots$
 - Next element in this sequence is calculated from the previous: $a_j = 2 \cdot a_{j-1} + 1$
 - Can prove by induction:

•
$$a_j = 2^j - 1$$

- Performance:
 - Worst case: $n = 2^m 1$
 - Two multiplications per step
 - There are m-1 steps
 - Total is 2m 2 multiplications
 - Which is $2\log_2(n) 2$ multiplications

Efficient Calculations of Powers

• Performance: $O(\log(n))$

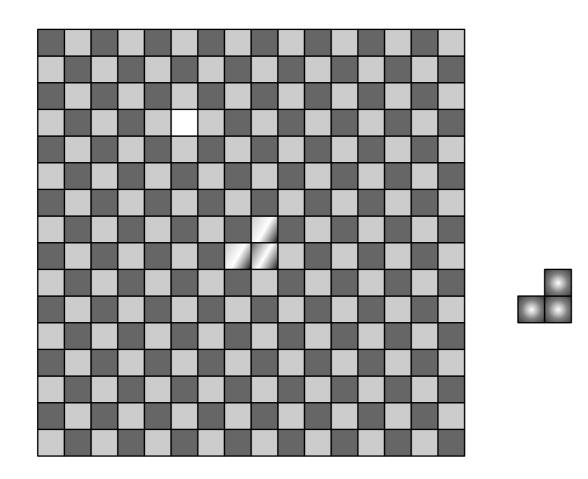
Efficient Calculations of Powers

• Implementation using binary operations

```
def power(x, n):
 if n == 0:
     return 1
 if n == 1:
     return x
 m = n >> 1
 r = n&0x01
 p = power(x,m)
 if r:
     return p*p*x
 return p*p
```

Triominos

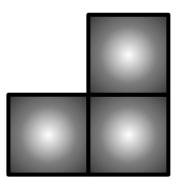
- We are given a chess board of size $2^m \times 2^m$ with one field removed.
- Write a program that shows how to tessellate the chess board with a triomino



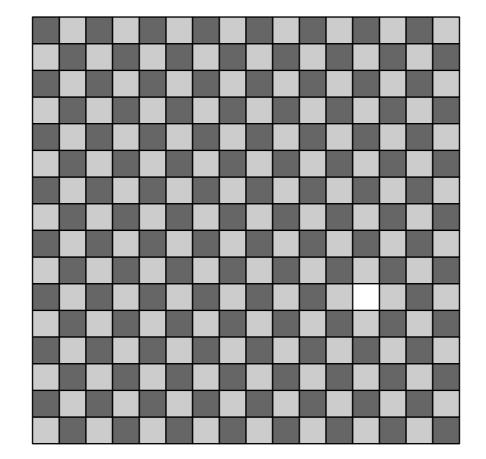
Triominos

- Notice:
 - The chess board has $2^m \times 2^m \equiv (-1)^m \times (-1)^m \equiv 1 \pmod{3}$ fields.
 - A Triomino has three fields
 - So, maybe it is possible

- Base Case:
 - *m* = 1.
 - A two-by-two chess board has four fields.
 - Remove one, and you have a triomino

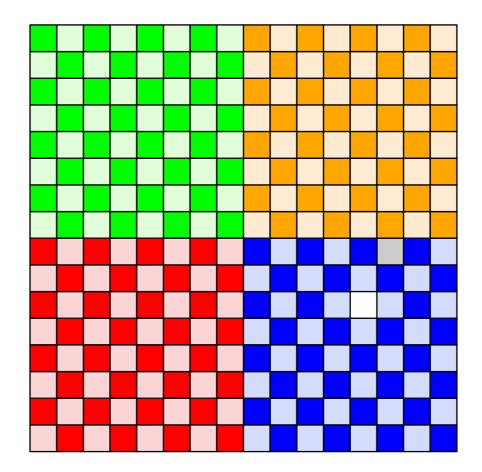


- Recursion:
 - A $2^m \times 2^m$ chessboard consists of four $2^{m-1} \times 2^{m-1}$ chessboards.
 - Take such a board with one field removed.

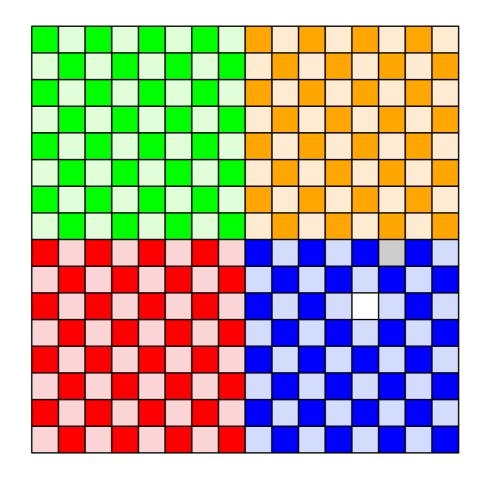


Triominos

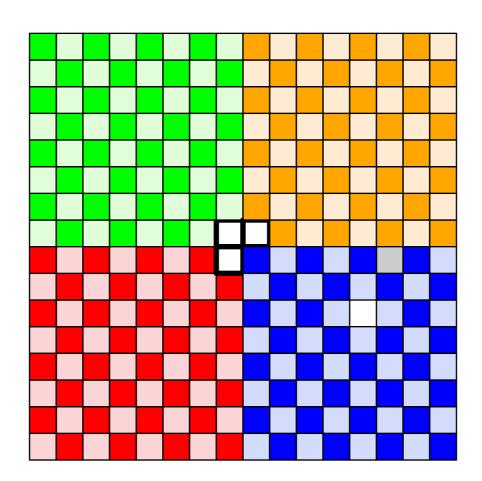
• Divide the board into four equal parts



- One of them (here the blue one) has the missing field.
- Create a list of triominos that fill this up



• Place a Triomino in the middle, cutting out one field from each of the other sub-boards.



- Add this triomino to the list.
- The three remaining boards (green, orange, red) can now be covered with triominos

