
Recursion
Thomas Schwarz, SJ

Algorithms +Datastructures = Programs

N.E. Wirth, 1976

“The power of recursion evidently lies in the possibility
of defining an infinite set of objects by a finite
statement. In the same manner, an infinite number of
computations can be described by a finite recursive
program, even if this program contains no explicit
reference.”

Recursion as a
Universal Tool

• Recursion possible:

• Solution depends partially on solution(s) to (a) smaller
problem(s)

• Recursion function consists of

• Base Case

• Call to function with smaller arguments

Examples for
Recursion

• Euclidean Algorithm

• Base case: one number is zero

• Recursion: express the problem using smaller numbers

• a > b ⇒ gcd(a, b) = gcd(b, a % b)

Examples of Recursion:
Efficient Calculations of Powers

• Naive power calculation:

•

• This uses n multiplications.

• Can do better by setting acc = x, but that still uses
 multiplicationsn − 1

def power(x,n):
 acc = 1
 for _ in range(n):
 acc *= x

Examples of Recursion:
Efficient Calculations of Powers

• There is a better way with recursion

• If is even, : is the product of with itself.

• If n is odd, : is

• This leads to very simple Python code

n n = 2m xn xm

n = 2m + 1 xn xm ⋅ xm ⋅ x

Examples of Recursion:
Efficient Calculations of Powers

• Direct Python Implementation:

def power(x, n):
 if n == 0:
 return 1
 if n == 1:
 return x
 if n%2 == 0:
 return power(x,n//2)*power(x,n//2)
 return power(x,n//2)*power(x,n//2)*x

Examples of Recursion:
Efficient Calculations of Powers

• Why does this work

• A formal proof can assure that we did not make an
implementation mistake

• Proof is by induction

• Base Cases: n=0 and n=1 are directly in the code

• Induction Step: Assume it works for all inputs up to,
but not including n

• Need to show that it also works for n

Examples of Recursion:
Efficient Calculations of Powers

• Case distinction:

• If is even:

• Then and the code works

• If is odd

• Then and the code works

• Here, we are using the induction hypothesis

n

xn = xn//2 ⋅ xn//2

n

xn = x ⋅ xn//2 ⋅ xn//2

Examples of Recursion:
Efficient Calculations of Powers

• As you can see, recursion and induction match each
other closely

Examples of Recursion:
Efficient Calculations of Powers

• Performance:

• Best case: is a power of 2, i.e.

• By induction: show that the algorithm takes m steps.

• Each step uses one multiplication.

• Total of multiplications

n n = 2m

m = log2(n)

Examples of Recursion:
Efficient Calculations of Powers

• Performance:

• Worst case: is always odd

•

• Next element in this sequence is calculated from the
previous:

• Can prove by induction:

•

n

n = 1,3,7,… = a1, a2, a3, …

aj = 2 ⋅ aj−1 + 1

aj = 2j − 1

Examples of Recursion:
Efficient Calculations of Powers

• Performance:

• Worst case:

• Two multiplications per step

• There are steps

• Total is multiplications

• Which is multiplications

n = 2m − 1

m − 1

2m − 2

2 log2(n) − 2

Examples of Recursion:
Efficient Calculations of Powers

• Performance: O(log(n))

Examples of Recursion:
Efficient Calculations of Powers

• Implementation using binary operations

def power(x, n):
 if n == 0:
 return 1
 if n == 1:
 return x
 m = n >> 1
 r = n&0x01
 p = power(x,m)
 if r:
 return p*p*x
 return p*p

Examples of Recursion:
Triominos

• We are given a chess board of size with one field
removed.

• Write a program that shows how to tessellate the chess
board with a triomino

2m × 2m

Examples of Recursion:
Triominos

• Notice:

• The chess board has
 fields.

• A Triomino has three fields

• So, maybe it is possible

2m × 2m ≡ (−1)m × (−1)m ≡ 1 (mod 3)

Examples of Recursion:
Triominos

• Base Case:

• .

• A two-by-two chess board has four fields.

• Remove one, and you have a triomino

m = 1

Examples of Recursion:
Triominos

• Recursion:

• A chessboard consists of four
chessboards.

• Take such a board with one field removed.

2m × 2m 2m−1 × 2m−1

Examples of Recursion:
Triominos

• Divide the board into four equal parts

Examples of Recursion:
Triominos

• One of them (here the blue one) has the missing field.

• Create a list of triominos that fill this up

Examples of Recursion:
Triominos

• Place a Triomino in the middle, cutting out one field from
each of the other sub-boards.

Examples of Recursion:
Triominos

• Add this triomino to the list.

• The three remaining boards (green, orange, red) can now
be covered with triominos

