Selecting and Sorting

Thomas Schwarz, SJ

 A permutation of the set {1,2,...,n} is a reordering of the numbers where each number between 1 and n appears exactly once.

- How many permutations are there?
 - Use recurrence!
 - In a permutation of {1,2,...,*n*}, where is the *n* located?
 - There are n-1 other numbers.
 - This gives us n 2 gaps and spots before and after

- Let *n*! be the number of permutations of *n* elements
 - This gives us the recurrence

•
$$n! = n \cdot (n-1)!$$

• which can be unfolded very simply

•
$$n! = \prod_{i=1}^{n} i$$

How do we determine its asymptotic growth?

$$n! = \prod_{i=1}^{n} i$$

Use Logarithms!

• Approximation of the factorial

Use
$$\log n! = \sum_{i=1}^{n} \log(i)$$

Use an integral!

$$\log(n!) = \sum_{i=1}^{n} \log(i)$$
$$\approx \int_{i=1}^{n} \log(x) dx$$
$$= [x \log x - x]_{1}^{n}$$
$$= n \log(n) - n + 1$$

Therefore

$$n! \approx \exp(n \log(n) - n - 1)$$
$$= \exp(\log(n^n) - n + 1)$$
$$= n^n \cdot e^{-n} \cdot e$$
$$= e \cdot \left(\frac{n}{e}\right)^n$$

An analysis of the error substituting the Riemann sum for an integral gives Stirling's formula (invented by de Moivre)

$$\sqrt{2\pi}n^{n+\frac{1}{2}}e^{-n} \le n! \le en^{n+\frac{1}{2}}e^{-n}$$

Simple Sorting Algorithms

Thomas Schwarz, SJ

Simple Sorting

- Sorting algorithms can be in-place:
 - No additional memory is needed
 - Sorting algorithms can be based on swaps

Simple Sorting

- Implementing in-place sorting with swaps
 - Do not move large objects:

temp = blue.copy()
blue = orange.copy()
orange = temp.copy()

• Instead move pointers to objects: (also more natural in Python)

arr[3], arr[6] = arr[6], arr[3]

Thomas Schwarz, SJ

- Idea of bubble sort:
 - Repeatedly swap adjacent elements in an array until they are in order
 - Reminder: Swaps in Python are easy:
 - arr[i], arr[i+1] = arr[i+1], arr[i]
 - while not done: for i in range(len(arr)-1): if arr[i] > arr[i+1]: arr[i],arr[i+1]=arr[i+1],arr[i]

• Example: Sort

• First pass: Check first pair

• Swap and move on

• No swap necessary, move on

- Example:
 - Swap and move on

• Swap and move on

• Swap and move on

- Example:
 - Swap and move on
 - 2 4 5 3 1 0 6
 - Array is still not sorted, so we need to continue
 - However: Notice that the maximum element has been picked up and is now at the correct position
 - We only have to order the first n-1 positions

- Example
 - Second pass:

• Example (Second Pass):

 The maximum in the remaining array has now reached its correct point

• Example: Third Pass

 Third largest element has bubbled up to the correct place

• Fourth pass

Now 3 has bubbled up

• Fifth Pass

• 2 has bubbled up

• Final Pass

1 has bubbled up, and a singleton is always sorted:

- We need one less pass than there are array elements
 - And we do not need to look at the last elements of the array

```
def bubblesort(arr):
    n = len(arr)
    for i in range(n-1):
        for j in range(n-i-1):
            if arr[j] > arr[j+1]:
                arr[j],arr[j+1]=arr[j+1],arr[j]
```

- Potential improvements:
 - After each pass, the elements after the last swap are already in order
 - We can skip the corresponding passes
 - But need to keep track of the last swap

- Performance:
 - At pass $i, i = 0, 1, \dots, n 2$, we compare n i 1 values
 - This means, we make

•
$$(n-1) + (n-2) + \dots + 2 + 1 = \frac{n(n-1)}{2}$$

comparisons

- If we use the last swap trick:
 - Best case behavior: The array is sorted, we did not do any swap, and we are done after a single pass with n-1 comparisons

- Bubble sort is known to be the least efficient sort for data that is not already sorted
 - Among the sorting algorithms that do not try to be horrible

Cocktail Sort

- Bubble sort will move small elements only slowly to their correct position
 - Cocktail sort makes one pass from the left to the right
 - Moves maximum to its rightful spot
 - Then the next pass from the right to the left
 - Moves minimum to its rightful spot
 - Then the next pass from left to the right starting with second element and ending before the last one

Cocktail Sort

Thomas Schwarz, SJ

- Idea:
 - Break the array into a sorted and an unsorted part
 - Move first element of the unsorted part into the correct position in the sorted array

- Example:
 - Sort 4 2 6 5 3 1 0
 - Reddish part is unsorted: initially whole array
 - Greenish part is sorted: initially empty

• Example:

- First element in the red part is 4:
- Insert 4 into the green part

• Example

- Next unsorted element is 2
- Compare with 4
- Insert in front of 4

• Example

- Next unsorted element is 6
 - Compare with 2, then 4
 - Insert after 4

• Example

- Next unsorted element is 5
- Compare with 2, 4, 6
 - Insert before 6

• Example

- Next unsorted element is 3
- Compare with 2, then 4
- Insert before 4

• Example

- Next comes 1
- Compare with 2
- Insert before 2

- Example
 - 1 2 3 4 5 6
 - Final unsorted element is 0
 - Compare with 1
 - Insert before 1
 - 0 1 2 3 4 5 6
 - We are done

- Performance:
 - Inserting at a specific index in an array means moving the elements after the insertion
 - This is a big hidden cost
 - Inserting at a specific index into a linked list only involves finding the insertion point and constant link resetting work
 - However, we can now avoid comparisons
 - To insert into a sorted array of length i

• only need on average
$$\frac{i}{2} + 1$$
 comparisons

• Average case:

• Pass *i* has
$$1 + \frac{i}{2}$$
 comparisons
• Total of $\sum_{i=0}^{n-1} (1 + \frac{i}{2}) = n + \frac{1}{2} \frac{n(n-1)}{2}$ comparisons

- Best Case:
 - Only one comparison per pass:
 - New element inserted into the sorted part is smaller than the current minimum of the part
 - Original array is ordered from maximum to minimum

Selection

Selection Problems

- Given an unordered array:
 - Find the k-largest (-smallest) element in an unordered array
 - Naïve Solution:
 - Sort (usually in time $\Theta(n \log n)$)
 - Pick element n k or k of the sorted array

Selection Problem

- Finding the maximum
- Finding the maximum and minimum at the same time
- Finding the k^{th} largest element
- Finding the median

• Obvious algorithm:

```
def max(array):
    result = array[0]
    for i in range(1, len(array)):
        if array[i]>result:
            result = array[i]
        return result
```

• n-1 comparisons

- Toy algorithm:
 - Partition array into $\lfloor n/2 \rfloor$ pairs.
 - (There might be an additional element).
 - Use one comparison in order to select the largest of each pair (plus the odd one out if exists)
 - These form an array of length $\lfloor n/2 \rfloor + 1$
 - Recursively call the toy algorithm

• What is the recurrence relation?

- $T(n) = T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
- T(2) = 1

• Now use substitution to get an idea of solving the recurrence

• Assume *n* is a power of 2

- Recurrence then becomes
 - T(n) = T(n/2) + n/2, T(2) = 1

•
$$= T(n/4) + n/4 + n/2$$

. . .

•
$$= T(n/8) + n/8 + n/4 + n/2$$

- $= T(2) + 2 + 4 + 8 + \dots + n/8 + n/4 + n/2$
- = n 1

- Now prove by induction for all $n \in \mathbb{N}$
- $T(n) = T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
- T(2) = 1

- Induction Hypothesis: T(m) = m 1 if m < n.
- *T*(*n*)
 - $= T(n \lfloor n/2 \rfloor) + \lfloor n/2 \rfloor$
 - $= n \lfloor n/2 \rfloor 1 + \lfloor n/2 \rfloor$
 - = n 1

- In fact:
 - Theorem: Finding the maximum of an array of length n costs at least n 1 comparisons
 - *Proof*: Place all elements into three buckets:
 - One for not-looked at
 - One for won all comparisons
 - One for lost at least one comparison

- A single comparison can involves 6 cases
 - X-X: move two elements from X, one into W, one into L
 - X-W: move one element from X into W or move one element from X into W and one from W into L
 - X-L: move one element from X into W or one into L
 - W-W: move one element from W to L
 - W-L: nothing or move one element from W to L
 - L-L: nothing

- To have finished the algorithm:
 - No elements left in X
 - Only one element left in W

• Otherwise, can construct counterexample

• One left in X: could be the maximum

- Two (or more) left in W:
 - Which one is the maximum?

- Each comparison sends at most one element to L
- At best, n-1 comparisons

- Combined Maximum and Minimum
 - Naïve algorithm:
 - Calculate the max, then the min (can exclude the max)
 - m-1+m-2=2m-3 comparisons

- A better algorithm
 - Divide the array into pairs
 - Compare the values of each pair
 - Place the winner of each pair in one array, the looser of each array in a second array
 - (Or use swapping so that the winners are in even position and the losers are in odd positions)
 - Now use maximum and minimum on the two subarrays

- Case 1: *n* is even
 - There are n/2 pairs or n/2 comparisons

- Run maximum on even indexed array elements
- This gives us n/2 1 comparisons
- Same for minimum

• Total is
$$n/2 + n/2 - 1 + n/2 - 1 = \frac{3n}{2} - 2$$
 comparisons

- Case: *n* is odd
 - Run algorithm on the first n-1 elements

•
$$\frac{3n-3}{2} - 2$$
 comparisons

• Then add two comparisons to see whether the last element is either minimum or maximum

• Total of
$$\frac{3n-3}{2}$$
 comparisons

- Can we do better?
 - Use a more sophisticated bin method
 - X not looked at, W won every comparison, L lost every comparison, Q - at least one win and at least one loss

 To be successful, need to move everything out of X and have only one element in W and L

• Otherwise can have a counter-example

- Just counting the moves is not sufficient
 - Example:
 - We compare an element $w \in W$ with an element $l \in L$
 - Possibly: w < l
 - And we move both elements to the ${\cal Q}$ bucket
 - So, possible to move all *n* elements out of *X* into *W* ∪ *L* in *n*/2 comparisons and *n* − 2 elements out of *W* ∪ *L* into *Q* in *n*/2 − 1 comparisons
 - Only gives n 1 moves!

- Use an **adversary** argument
 - Algorithm can <u>only</u> depend on the knowledge of the <u>previous</u> comparisons when making a decision
- An adversary is allowed to change all values as long as the results of the comparisons stay the same
 - If w ∈ W and l ∈ L, then the only thing the algorithm knows is that w has won all of its comparisons and l has lost all of its comparisons
 - Adversary therefore is allowed to change the value of *l* downward
 - Adversary guarantees that w > l.

- With the help of the adversary who substitutes values when needed
- Potential: $\frac{3}{2}|X| + |W| + |L|$
 - Calculate net changes for comparisons between buckets

- Compare X with X
 - Net change (-2, 1, 1, 0)
 - Potential change: 1

- Compare X with W
 - Case 1: $x \in X, w \in W, x < w$ Net change (-1,0,1,0)
 - Case 2: $x \in X, w \in W, x > w$ Net change(-1,0,0,1)
 - The adversary can prevent Case 2 by decreasing *x*
 - Possible because this is the first time that we look at
- Potential changes by $\frac{1}{2}$

- Compare X with L
 - similar as before

- Compare X with Q
 - The element in X changes to either $W \, {\rm or} \, L$
 - Net change (-1, 1, 0, 0) or (-1, 0, 1, 0)
 - Potential change $\frac{1}{2}$

- Compare W with W
 - One element looses
 - Net change (0, -1, 0, 1)
 - Potential change 1

- Compare W with L
 - Adversary guarantees that the element in W wins by making <u>all</u> of them bigger
 - This works because each element in W has only seen wins and that does not change if the elements are made bigger.
 - No change

- Compare W with Q
 - Since the elements in W have always won, the adversary can make them larger
 - No net change

- Comparisons with L are the same as with W
- Comparisons within Q are useless, but make no changes

- With the help of the adversary
 - Potential changes by at most 1
- Initial Potential: $\frac{3}{2}n$
- Final Potential: 2

• Need at least
$$\frac{3n-4}{2}$$
 comparisons

Thomas Schwarz, SJ

- Divide array in sorted and unsorted parts
 - At each step, insert the minimum of the unsorted part at the end of the sorted part

- Array is divided into a sorted (green) and unsorted portion
- We keep the index *i* of the first element in the unsorted portion

• Example:

- Find the index j of the minimum of the elements in the unsorted array
 - Implemented in numpy as argmin

j = np.argmin(arr[i:])+i

- In Python, write your own function
- Minimum here is 0: j = 6

• Example:

• Now swap the elements at i and j

```
arr[i], arr[j] = arr[j], arr[i]
```

• Increment i to 1 i=i+1

• Example:

• Minimum is now 1: j = 5

• Swap array elements at i and j and increment i

• Example:

• We can stop at i = len(arr) - 1 because the array is now sorted

- Performance
 - At pass *i*:
 - Need to find minimum among n i elements
 - Costs n i 1 comparisons
 - Total costs:

$$(n-1) + (n-2) + \dots + 2 + 1 + 0 = \frac{1}{2}n(n-1)$$

comparisons

• $\Theta(n^2)$

- In practice:
 - Among quadratic sorting algorithms:
 - Usually the best performing one

- Many sorting algorithms use comparisons
- An algorithm needs to be able to sort with all orders of inputs, i.e. distinguish between n! arrangements of the input by order
 - assuming all elements are different

- Sorting algorithm makes a comparison, then decides on what to do
- Can be represented as a binary tree

A fictitious algorithm for sorting three elements as a Decision Tree

- Represent any comparison based algorithm by such a tree
- Any run of the algorithm represents a path from the root to a leaf node
- Leaf nodes represent an algorithm finishing,
 - So they need to have an ordering, i.e. a permutation of the input array

- How many steps does a tree with *N* leaves have?
- A tree of height *h* has how many leaves?
 - Height 0: only root, one leaf
 - Height 1: only root plus one or two leaves: ≤ 2
 - Height 2: at most two nodes at height one have at most $\leq 2^2$ leaves
 - Induction: Height h has at most 2^h leaves

- Relationship between height of decision tree and number of elements to be sorted:
 - Need to have at least *n*! leaves:
 - $2^h \ge n!$
 - which implies

•
$$h \ge \log_2(n!) = \frac{1}{\log(2)} \log(n!)$$

• $\approx \frac{1}{\log(2)} n \log(n) - n + 1$

• $= \Theta(n \log(n))$

 Since the height of the decision tree is the worst time runtime, we have

• The runtime of a comparison based sorting algorithm is at least $\Theta(n \log(n))$

Better Sorting Algorithms

- Example of a sorting algorithm that uses additional space
- But variants make it an in-place algorithm
 - A version of selection sort with the right data structure for the unordered part
 - Idea:
 - Insert all elements into a heap
 - Then empty the heap with calls of extract-min
 - Get the same elements back, but in order
 - Performance:
 - $\approx \log(1) + \log(2) + \ldots + \log(n-1) + \log(n) \approx \log(n)n$

- Details:
 - Step 1: convert array into a maximum heap
 - Idea:
 - Elements in the second half are all leaves
 - Form their own sub-heaps
 - Need to learn how to convert two sub-heaps and a parent into a proper head

• How to heapify two sub-heaps?

- If $t \ge l$ and $t \ge r$: ensemble already a heap
- If $l = \max(\{t, l, r\})$: exchange t and l
 - But now the left might no longer be a heap

- Because the root of the left heap has become smaller, the heap property there is no longer guaranteed
- We need to continue heapifying there

```
def heapify(arr, i):
   l, r = left(i), right(i)
   if l < len(arr):
      if arr[i] < arr[l]:</pre>
         largest = l
      else:
         largest = i
   if r < len(arr):</pre>
      if arr[r] > arr[largest]:
         largest = r
   if largest == i:
      return
   else:
      arr[i], arr[largest] = arr[largest], arr[i]
      heapify(arr, largest)
```

- Performance of heapify: $O(\log(n))$
- To guarantee result is a heap:
 - left and right subheap need to be heaps indeed

- To create a heap:
 - use heapify working back
 - Can start at location [len(arr)/2]

```
def make_heap(arr):
    for i in range( int(len(arr)/2), 0, -1):
        heapify(arr,i)
```

• We can even show: runtime of make_heap is linear

- Heap-sort:
 - Make array into a heap
 - Extract the maximum
 - move it to the last element of the array
 - Repeat

```
def heap_sort(arr):
    for i in range(len(arr)-1, 1, -1):
        arr[0], arr[i] = arr[i], arr[0]
        arr.heap_size = arr.heap_size - 1
        heapify(arr, i)
```

- Performance:
 - Making the array into a heap: O(n)
 - Extracting the maximum and putting it at the end: $\Theta(1)$
 - Heapify the array again: $O(\log_2(n) + O(\log_2(n-1)) + ... + O(\log_2(2)) + O(\log_2(1)))$

Heap Sort Example

- Example
 - 9
 8
 3
 4
 11
 6
 13
 1
 7
 10
 12
 0
 2
 5
 - First phase: heapify into a max heap
 - Easier to start indices with 1

• Heap property is true

•
$$j = 6, l = 12, r = 13$$

Heap property maintained

• i = 5, left = 10,right = 11

- Heap property needs to be restored:
 - Exchange 8 for 12
 - 9
 11
 3
 4
 12
 6
 13
 1
 7
 10
 8
 0
 2
 5
 - No need to continue

•
$$j = 4, l = 8, r = 9$$

- Exchange 4 with 7
- 9
 11
 3
 7
 12
 6
 13
 1
 4
 10
 8
 0
 2
 5

•
$$j = 3, l = 6, r = 7$$

• Exchange 3 with 13

• Test result j = 7, l = 14: exchange 3 with 5

•
$$j = 2, l = 4, r = 5$$

- Exchange 11 with 12
- Then check heap property with i = 4, l = 8, r = 9

•
$$j = 1, l = 2, r = 3$$

• Exchange 9 with 13 and check i = 3, l = 6, r = 7

 13
 12
 9
 7
 11
 6
 5
 1
 4
 10
 8
 0
 2
 3

- Second phase:
 - Extract maxima:
 - 13
 12
 9
 7
 11
 6
 5
 1
 4
 10
 8
 0
 2
 3
 - Exchange 13 with 3 and heapify:
 - 3
 12
 9
 7
 11
 6
 5
 1
 4
 10
 8
 0
 2
 13
 - Exchange 3 with 9
 - 12
 3
 9
 7
 11
 6
 5
 1
 4
 10
 8
 0
 2
 13
 - Exchange 3 with 11

- Exchange 3 with 10
- 12
 11
 9
 7
 10
 6
 5
 1
 4
 3
 8
 0
 2
 13
- Can stop here

- Extract maximum again
 - Exchange 12 with last element of heap
 - 2
 11
 9
 7
 10
 6
 5
 1
 4
 3
 8
 0
 12
 13
 - Now heapify again

• Extract maximum:

- 0 10 9 7 8 6 5 1 4 3 2 11 12 13
- Heapify:

 10
 8
 9
 7
 3
 6
 5
 1
 4
 0
 2
 11
 12
 13

Extract maximum

- 2
 8
 9
 7
 3
 6
 5
 1
 4
 0
 10
 11
 12
 13
- Heapify

 We can stop here because the left and right index point to elements outside the heap

- Extract maximum
 - 0 8 6 7 3 2 5 1 4 9 10 11 12 13
- Heapify

 8
 7
 6
 4
 3
 2
 5
 1
 0
 9
 10
 11
 12
 13

- Extract maximum
 - 0 7 6 4 3 2 5 1 8 9 10 11 12 13
- Heapify

- Extract maximum
 - 0
 4
 6
 1
 3
 2
 5
 7
 8
 9
 10
 11
 12
 13
- Heapify

Extract maximum

- 0
 4
 5
 1
 3
 2
 6
 7
 8
 9
 10
 11
 12
 13
- Heapify

• Extract maximum

• Heapify

Extract maximum

- 0
 3
 2
 1
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
- Heapify

 3
 1
 2
 0
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13

- Extract maximum
 - 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
- Heapify

- Extract maximum
 - 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
- Heapify

- Extract maximum
 - 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
- Extract maximum
 - 0 1 2 3 4 5 6 7 8 9 10 11 12 13

- Counting sort
 - Assume we want to sort numbers in $\{1,2,\ldots,k-1,k\}$
 - Create a dictionary with keys in $\{1, 2, \dots, k 1, k\}$
 - E.g. as an array Int(1:k)
 - Walk through the array, updating the count
 - Once the count is done, go through the dictionary in order of the keys, emitting as many keys as the count

• Counting sort:

• 10	3	4	10	12	4	5	3	8	9	2	2	5	10	1	2	7

• create a counting array:

-													
•	1:	2:	3:	4:	5:	6:	7:	8:	9:	10:	11:	12:	13:

• Walk through the array and calculate counts

	1: 1	2:3	3: 3	4: 2	5: 2	6: 0	7: 1	8: 1	9: 1	10: 3	11:0	12: 1	13: 0
•		2.0	0.0		0.2	0.0		0. 1	0. 1	10.0	11.0	12.1	10.0

- Emit keys according to count
 - 1 2 2 2 3 3 3 4 4 5 5 7 8 9 10 10 10 12

- If there are n elements in the array, then counting sort uses
 - $\sim k$ to create and evaluate the counting array
 - $\sim n$ to update the counting array
- Therefore: counting sort run-time is $\Theta(n+k)$

- Radix Sort
 - Imagine sorting punch cards with by ID in the first columns

- Simple Method:
 - Create heaps of cards based on the first digit
 - Then recursively sort the heaps

- Better method:
 - Sort according to the last digit
 - Then use a *stable sort* to sort after the second-last digit
 - Then use a stable sort to sort after the third-last digit

- Stable sort:
 - Leave order of elements with the same key during sorting
 - Insertion sort, merge sort, bubble sort, counting sort are all stable
 - Heap sort, selection sort, shell sort, and quick sort are not

- Radix sort:
 - for i in range(length(key), 0, -1):
 stable_sort on digit i of key

135
242
122
023
220
144
321
221
203
302

220
321
221
242
122
302
023
203
144
135

302	
203	
220	
321	
221	
122	
023	
135	
242	
144	

023
122
135
144
203
220
221
242
302
321

- Radix sort correctness
 - What would be a loop invariant?

- Assume *n* keys of *d* digits in $\{0, 1, \dots, r-1\}$
- Use counting sort to sort in time $\Theta(n + r)$
- Radix sort then takes $\Theta(d(n + r))$ time

- Given *n* numbers of *b* bits each
- Assume $b = O(\log(n))$
- Choose $r = \lfloor \log_2(n) \rfloor$.
 - Divide the b-bit numbers into "digits" of length r
 - Thus, each round of radix sort takes time $\Theta(n + 2^r)$

• There are
$$\lceil \frac{b}{r} \rceil$$
 rounds

• So, radix sort takes $\Theta(\frac{b}{r}(n+2^r)) = \Theta(\frac{b}{r}(n+n)) = \Theta(n)$ time!