Stacks

Thomas Schwarz, SJ

Stacks

e Stacks:

e Named after a stack of papers or a stack of dishes in a
cafeteria

* When you put a dish on the stack, it slightly goes down

* When you take a dish off the stack, the stack slightly
goes up

Stacks

e Stack a.k.a. LIFO queue
e |Last In -- First Out
 [wo operations:

e Push(object)

Push(E)
Push(D)

)
)

> WO |0

> m|(O([TO| m

e 9 & 4

a8 e 4
AN\ W

a8 S & 4
AN\ P\ W

__ N\ O\ W\ W

Stacks

 [wo operations:

e Pop() returns uppermost object

Pop()

\
)

)U
(@)

=3

4N

> (O[O m

> O |0

Y Y Y Y
A A
Y Y Y
A A
Y Y)

_ A\ W

Stacks

e Your turn:
* An initially empty stack

 What is the content of the stack after the following
series of operations

push (A), push(B), pop(), push(C)
push (E), push(F), pop(), pop()

* And what is the result of the last operation?

Stacks

push (A), push(B), pop(), push(C)
push (E), push(F), pop(), pop()

—
(e) (e

G (¢) ([T (e (e

> C~)) C [~) 7 C73

G
——
A

Last pop returns Lk

Stacks

 There are two auxiliary methods:
* peek()
e | ook at the last element pushed on a stack
e Raises error or returns empty is stack is empty
* Does not change the stack
* is_empty()

e returns True if the stack is empty

Python Implementation

e Can use a Python list
e pop() removes the last element

e append() adds at the end

Python Implementation

 Use an internal component that is a Python list

class Stack:
def 1nit (self):
self.array = []
det peek(self) :
return self.array[-1]
def pop(self):
return self.array.pop ()
det push(self, wvalue):
self.array.append (value)
def 1s empty(self):
return len(self.array)==
def str (self):
return str(self.array)

Parenthesization

e |s an expression with parentheses well balanced?

e E.g. well-balanced: (() ()) ((()

e Not well-balanced: (C ())

Parenthesization

e Example:

O IO o)

* Process from left to right

e Push on stack

nnoonoonooannd

Parenthesization

I

(

Parenthesization

* When we push a closing parenthesis, we see whether we
can pop by combining with an opening parenthesis

I
D O RRE) ‘

........................

Parenthesization

Parenthesization

Parenthesization

Parenthesization

Parenthesization

Parenthesization

Parenthesization

The stack is empty, the string has been accepted

Parenthesization

* This can be extended to several types of parentheses

e Example: "[(]) ()" is malformed

Parenthesization

No0aan

Parenthesization

Parenthesization

Parenthesization

We try to push a ')’ but cannot match it with previous one
This is how we can recognize a bad parenthesization

Parenthesization

* When-ever a closing parenthesis is encountered:
e We try to match
* |In which case we pop the other part of the pair
e And if that is not possible

e We declare defeat

conflict

Parenthesization

* |mplementation

e |nterface:

 Use the keyboard to enter parentheses, one at a time

e Use 'Stop' to indicate the end of the expression

while True:
inp = input(': ")
1f inp == 'Stop':
return

Parenthesization

* Creating an internal stack importing stack
* Processing 'Stop’

 EXxpression is well-formed if the stack is empty

import stack

def test () :
my stack = stack.Stack()
while True:
print (my stack)
inp = 1nput(': ')
1f 1inp == 'Stop':
return my stack.is empty ()

Parenthesization

e Process parentheses:
e Opening brackets are pushed

def test () :
my stack = stack.Stack()
while True:
print (my stack)
inp = 1nput(': ')
1f 1np == 'Stop':
return my stack.is empty ()
ellf 1np == ' (':
my stack.push (' (")
elif inp == '["':
my stack.push('[")

Parenthesization

e Closing brackets are processed

elif inp == ") ':
e |f the stack is empty: 1f my stack.is empty():
return False
 EXxpression not balanced elif my stack.peek() == '(':
my stack.pop()
e |f top element matches: clse:

return False
e Pop the top element

e |f the top element does not match

e EXpression not balanced

Reverse Polish Notation

e Polish Notation was invented to show that arithmetical
expressions can be expressed without parentheses

 Reverse Polish Notation (RPN) used in calculators until
rather recently

e (Central idea: Enter operands, then the operation

Reverse Polish Notation

e Example:
e 3+4)*O5-T7)+1
 Take operands, place operator afterwards
e B3+4)*(5-T7),1,+
e 34+4),05-=-7),*,1,+
e 34,4+ 5,7 —,%,1,+

* Notice that we are using commata to separate
constituents of the expression

Reverse Polish Notation

e Example:

e 1,234, +,5,—,6,%,/,+
e 1,234+4,5,—,6,%,/,+

e 1,234+4,5,—-.,6,*%,/,+

e 1,2,((34+4)—-)5),6,*,/,+

e 1.2,((3+4)=5)-6),/,+
1 - |
* ((GB+4)-5-6
1 4 -
(3+4)—=5)-6

Reverse Polish Notation

* We can use a stack to evaluate an arithmetic expression in RPN

Processing 3,5, +,7,2, — , * from left to right
Push 3 then 5 on astack [3,5]

When processing the '+' operator, pop the last two from the stack,
add them and push the result [8]

Push 7, then 2 on the stack [8,7,2]

When processing the '-' operator, pop the last two and push the
difference [8,5]

Processing the ™' operator: Pop the last two and push the product
[40]

This Is the result

Reverse Polish Notation

e Assume we are given an expression in RPN
e Separated by spaces

 Return None plus emit error message if expression is
malformed

Reverse Polish Notation

We first take the string and split it (around white spaces)

We then separately handle operators and integers

If we try to pop from an empty stack, we know that the expression
Is malformed

def rpn(a string):
my stack = stack.Stack()
components = a string.split()
print (components)
for x 1n components:
lell’l [|_|_|, | I | T % 0 l/l]:

’ ’

else:

Reverse Polish Notation

* An operator:

e Try to pop twice and then push the result of the operation applied
on the popped numbers

if x in ['"+', '=', 'x', V/']:
try:
a = my stack.pop()
b = my stack.pop ()
1f x == "+':
my stack.push (a+b)
elif x == "'-":
my stack.push (b-a)
elif x == "*';
my stack.push (a*b)
elif x == "/":
my stack.push (b/a)
except IndexError:
print ('Expression malformed', x, my stack)
return None

Reverse Polish Notation

e |f the component is not an operator:
* Make it into a number

e And push it

else:
try:
a = 1int (x)
except ValuekError:
print ('Expression malformed', Xx)
return None
my stack.push(a)

Reverse Polish Notation

At the end: the stack should house a single number
e Pop it

* Nota bene: The stack cannot be empty at this point

e But it could have more than one number

e Deal with this as homework

