
Stacks
Thomas Schwarz, SJ

Stacks
• Stacks:

• Named after a stack of papers or a stack of dishes in a
cafeteria

• When you put a dish on the stack, it slightly goes down

• When you take a dish off the stack, the stack slightly
goes up

Stacks
• Stack a.k.a. LIFO queue

• Last In -- First Out

• Two operations:

• Push(object)

A
B
C

A
B
C
D

Push(D)
Push(E)

A
B
C
D
E

Stacks
• Two operations:

• Pop() returns uppermost object

A
B
C
D
E

A
B
C
D

A
B
C

Pop()
Pop()

Stacks
• Your turn:

• An initially empty stack

• What is the content of the stack after the following
series of operations

• And what is the result of the last operation?

push(A), push(B), pop(), push(C), push(D),
push(E), push(F), pop(), pop()

Stacks

push(A), push(B), pop(), push(C), push(D),
push(E), push(F), pop(), pop()

A A

B

A
C
D

A
C
D
E

F

A
C
D
E

A
C
D
E

A
C
D

A A
C

Last pop returns E

Stacks
• There are two auxiliary methods:

• peek()

• Look at the last element pushed on a stack

• Raises error or returns empty is stack is empty

• Does not change the stack

• is_empty()

• returns True if the stack is empty

Python Implementation
• Can use a Python list

• pop() removes the last element

• append() adds at the end

Python Implementation
• Use an internal component that is a Python list

class Stack:
 def __init__(self):
 self.array = []
 def peek(self):
 return self.array[-1]
 def pop(self):
 return self.array.pop()
 def push(self, value):
 self.array.append(value)
 def is_empty(self):
 return len(self.array)==0
 def __str__(self):
 return str(self.array)

Parenthesization
• Is an expression with parentheses well balanced?

• E.g. well-balanced: (() ()) ((()))

• Not well-balanced: ((())

Parenthesization
• Example:

•

• Process from left to right

• Push on stack

()(()()(()))

()(()()(())) (

Parenthesization

()(()()(())) (

(

Parenthesization
• When we push a closing parenthesis, we see whether we

can pop by combining with an opening parenthesis

()(()()(())) (

(

(

)

(

(

X
X

Parenthesization

()(()()(())) (

(

Parenthesization

()(()()(())) (

(

(

Parenthesization

()(()()(())) (

(

(

(

Parenthesization

()(()()(())) (

(

(

Parenthesization

()(()()(())) (

(

Parenthesization

()(()()(())) (

Parenthesization

()(()()(()))

The stack is empty, the string has been accepted

Parenthesization
• This can be extended to several types of parentheses

• Example: "[(]) ()" is malformed

Parenthesization

([)] ()

Parenthesization

([)] ()
(

Parenthesization

([)] ()
(

[

Parenthesization

([)] ()
(

[

)

We try to push a ')' but cannot match it with previous one

This is how we can recognize a bad parenthesization

Parenthesization
• When-ever a closing parenthesis is encountered:

• We try to match

• In which case we pop the other part of the pair

• And if that is not possible

• We declare defeat

([)] ()
(

[

)
conflict

Parenthesization
• Implementation

• Interface:

• Use the keyboard to enter parentheses, one at a time

• Use 'Stop' to indicate the end of the expression

while True:
inp = input(': ')
if inp == 'Stop':
 return

Parenthesization
• Creating an internal stack importing stack

• Processing 'Stop'

• Expression is well-formed if the stack is empty
import stack

def test():
 my_stack = stack.Stack()
 while True:
 print(my_stack)
 inp = input(': ')
 if inp == 'Stop':
 return my_stack.is_empty()

Parenthesization
• Process parentheses:

• Opening brackets are pushed

def test():
 my_stack = stack.Stack()
 while True:
 print(my_stack)
 inp = input(': ')
 if inp == 'Stop':
 return my_stack.is_empty()
 elif inp == '(':
 my_stack.push('(')
 elif inp == '[':
 my_stack.push('[')

Parenthesization
• Closing brackets are processed

• If the stack is empty:

• Expression not balanced

• If top element matches:

• Pop the top element

• If the top element does not match

• Expression not balanced

elif inp == ')':
 if my_stack.is_empty():
 return False
 elif my_stack.peek() == '(':
 my_stack.pop()
 else:
 return False

Reverse Polish Notation
• Polish Notation was invented to show that arithmetical

expressions can be expressed without parentheses

• Reverse Polish Notation (RPN) used in calculators until
rather recently

• Central idea: Enter operands, then the operation

•

Reverse Polish Notation
• Example:

•

• Take operands, place operator afterwards

•

•

•

• Notice that we are using commata to separate
constituents of the expression

(3 + 4) * (5 − 7) + 1

(3 + 4) * (5 − 7),1,+

(3 + 4), (5 − 7), * ,1,+

3,4, + ,5,7 − , * ,1,+

Reverse Polish Notation
• Example:

•

•

•

•

•

•

•

1,2,3,4, + ,5, − ,6, * , /, +

1,2,3 + 4,5, − ,6, * , /, +

1,2,3 + 4,5, − ,6, * , /, +

1,2,((3 + 4) − 5),6, * , /, +

1,2,(((3 + 4) − 5) ⋅ 6), /, +

1,
2

((3 + 4) − 5) ⋅ 6
, +

1 +
2

((3 + 4) − 5) ⋅ 6

Reverse Polish Notation
• We can use a stack to evaluate an arithmetic expression in RPN

• Processing from left to right

• Push 3 then 5 on a stack [3,5]

• When processing the '+' operator, pop the last two from the stack,
add them and push the result [8]

• Push 7, then 2 on the stack [8,7,2]

• When processing the '-' operator, pop the last two and push the
difference [8,5]

• Processing the '*' operator: Pop the last two and push the product
[40]

• This is the result

3,5, + ,7,2, − , *

Reverse Polish Notation
• Assume we are given an expression in RPN

• Separated by spaces

• Return None plus emit error message if expression is
malformed

Reverse Polish Notation
• We first take the string and split it (around white spaces)

• We then separately handle operators and integers

• If we try to pop from an empty stack, we know that the expression
is malformed

def rpn(a_string):
 my_stack = stack.Stack()
 components = a_string.split()
 print(components)
 for x in components:
 if x in ['+', '-', '*', '/']:

 ...
 else:
 ...

Reverse Polish Notation
• An operator:

• Try to pop twice and then push the result of the operation applied
on the popped numbers

if x in ['+', '-', '*', '/']:
 try:
 a = my_stack.pop()
 b = my_stack.pop()
 if x == '+':
 my_stack.push(a+b)
 elif x == '-':
 my_stack.push(b-a)
 elif x == '*':
 my_stack.push(a*b)
 elif x == '/':
 my_stack.push(b/a)
 except IndexError:
 print('Expression malformed', x, my_stack)
 return None

Reverse Polish Notation
• If the component is not an operator:

• Make it into a number

• And push it

else:
 try:
 a = int(x)
 except ValueError:
 print('Expression malformed', x)
 return None
 my_stack.push(a)

Reverse Polish Notation
• At the end: the stack should house a single number

• Pop it

• Nota bene: The stack cannot be empty at this point

• But it could have more than one number

• Deal with this as homework

