Laboratory 2

- 1. Define a function of *n* that calculates $\sum_{i=1}^{n} \frac{i}{i^2 + 1}$.
- 2. Find the number of integers between 1 and $11 \cdot 13 \cdot 17 \cdot 19$ that satisfy the congruences $x^2 \equiv 3 \pmod{11}$, $x^3 \equiv 8 \pmod{13}$, $x^4 \equiv 13 \pmod{17}$, $x^5 \equiv 9 \pmod{19}$.
- 3. Find the smallest integer *n* such that $\sum_{i=1}^{n} \frac{i}{i^2 + 1}$ is greater than 4. Do not use the function defined in Exercise 1 other than for checking.
- 4. A simple approximate integration formula for the integral $\int_{a}^{b} f(x)dx$ uses the average of a function f at the n points $a + \delta/2$, $a + \delta/2 + \delta$, $a + \delta/2 + 2\delta$, ..., $a + \delta/2 + (n-1)\delta(=b \delta/2)$ where $\delta = \frac{b-a}{n}$. Implement this as a function appint (f, a, b, n) that returns $\frac{(b-a)}{n}\sum_{i=0}^{n-1} f(a + \frac{\delta}{2} + i \cdot \delta)$
- 5. An approximation formula for the derivative of a function uses a small value $\delta = 0.000001$ and gives $f'(x) \approx \frac{f(x+\delta) - f(x-\delta)}{2\delta}$. Implement this as a function appder (f, x).