
Loops

Data Set Analysis
Thomas Schwarz, SJ

Marquette University

Loops
• Computer Science knows three types of loops

• Count driven

• The loop in C, Java, …

• Python emulates it with ranks: for i in range(100):

• Condition driven

• This is typical for while loops

• Collection controlled loop:

• This is the Python for-loop

• Collection can be any generator, file, list, dictionary, tuple, …

Python Iterators
• Python iterators are not covered in this course, but you

ought to be aware of this concept

• An iterator has a function next

• When an iterator runs out of objects to provide on a
next, it will create a StopIteration exception

• We can emulate this behavior in a while loop

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while num_iterator:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Creating an iterator

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Looping

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Getting the
next item

Python Iterators
numbers = [3,5,7,11,13,17,19,23,29,31]
num_iterator = iter(numbers)
while True:
 try:
 current_number = next(num_iterator)
 print(current_number)
 except StopIteration:
 break

Handling the
exception
generated when
next fails

Python Generators
• Python allows you to define generators

• We do not discuss generators in this course but you
ought to be aware of their existence

• A generator object creates a sequence of objects

• A generator just creates a generator object

• Looks like a function, but has a yield instead of a return

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

Generators look like
functions !

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

But have a “yield”
instead of a “return”

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

If this were a function,
it would return just one
element

Python Generators
def fib_generator():
 previous, current = 0, 1
 while True:
 previous, current = current, previous+current
 yield current

But a generator keeps
on yielding

Python Generator
• This Python generator will generate all the Fibonacci

numbers

While Loops

While Loops
• Controlled by a condition

• Normal way to leave a loop is for the condition to
become False

def heron(a):
 x = 1
 while abs(x*x-a) > 1e-12:
 x = (a/x + x)/2
 return x

While Loop
• Loop termination statements

• A break statement jumps out of a loop

• A continue statement will restart the loop

While Loop
• The else statement:

• Put after the end of the loop

• Executed if the loop condition is false

• “else” chosen instead of “finally” because Python did
not want to introduce new key words

While Loops
• Used in searches that need post-processing if nothing is

found

def sum_of_divisors(n):
 result = 0
 for i in range(1,n//2+1):
 if n%i==0:
 result += i
 return result

def perfect(x, y):
 for i in range(x, y):
 if sum_of_divisors(i)==i:
 return i
 else:
 print("nothing found")

Decision Trees

Decision Trees
• One of many machine learning methods

• Used to learn categories

• Example:

• The Iris Data Set

• Four measurements of flowers

• Learn how to predict species from them

Iris Data Set

Iris Setosa Iris Virginica Iris Versicolor

Iris Data Set
• Data in a .csv file

• Collected by Fisher

• One of the most famous datasets

• Look it up on Kaggle or at UC Irvine Machine
Learning Repository

• Want to learn to distinguish Iris Versicolor and Iris
Virginica

Iris Data Set
• Read the data set

• Program included in the attached Python file

• You might want to follow along on by programming

Measuring Purity
• Several measures of purity

• Gini Index of Purity

• Entropy

• In the case of two categories with p and q proportions,
defined as

• Unless one of the proportions is zero, in which case the
entropy is zero.

• High entropy means low purity, low entropy means high
purity

Entropy(p, q) = log2(p)p + log2(q)q

Building a Decision Tree
• A decision tree

• Can we predict the category (red vs blue) of the data
from its coordinates?

Building a Decision Tree
• Introduce a single boundary

16 blue, 1 red

46 blue, 42 red

Almost all points above the line are blue

Building a Decision Tree
• Subdivide the area below the line

16 blue, 1 red

44 blue, 3 red2 blue, 42 red

y1

x1

Defines three almost homogeneous regions

Building a Decision Tree
• Express as a decision tree

y > y1

x > x1

no

Blue

yes

BlueRed

Building a Decision Tree
• If a new point with coordinates (x, y) is considered

• Use the decision tree to predict the color of the point

• Decision tree is not always correct even on the points
used to develop it

• But it is mostly right

• If new points behave like the old ones

• Expect the rules to be mostly correct

Building a Decision Tree
• Decision trees can be used to predict behavior

• People with similar behavior have stopped patronizing
the enterprise

• Assume that we can predict clients likely to jump
ship

• Offer special incentives so that they stay with us

• This is called churn management and it can make lots
of money

Building a Decision Tree
• How do we build decision trees

• First rule: Decisions should be simple, involving only
one coordinate

• Second rule: If decision rules are complex they are
likely to not generalize

• E.g.: the lone red point in the upper region is
probably an outlier and not indicative of general
behavior

Building a Decision Tree
• Algorithm for decision trees:

• Find a simple rule that yields a division into two regions
that are more homogeneous than the original one

• Continue sub-diving the regions

• Stop when a region is homogeneous or almost
homogeneous

• Stop when a region becomes too small

Building a Decision Tree
• We need to try all possible boundaries and all possible

regions

• We better write some helper functions to help us

Processing Iris
• First, get the data

• 100 tuples, half with Virginica, half with Versicolor

>>> irises = get_data()
>>> len(irises)
100
>>> count(irises)
(50, 50)
>>> entropy(irises)
1.0
>>>

Processing Iris

[(7.0, 3.2, 4.7, 1.4, 'Iris-versicolor'),
(6.4, 3.2, 4.5, 1.5, 'Iris-versicolor'),
(6.9, 3.1, 4.9, 1.5, 'Iris-versicolor'),
(5.5, 2.3, 4.0, 1.3, 'Iris-versicolor'),
(6.5, 2.8, 4.6, 1.5, 'Iris-versicolor'),
…
…
(6.7, 3.0, 5.2, 2.3, 'Iris-virginica'),
(6.3, 2.5, 5.0, 1.9, 'Iris-virginica'),
(6.5, 3.0, 5.2, 2.0, 'Iris-virginica'), (
6.2, 3.4, 5.4, 2.3, 'Iris-virginica'),
(5.9, 3.0, 5.1, 1.8, 'Iris-virginica')]

Processing Iris
• We can divide the list according to coordinate and value

• We can see an increase in homogeneity, but it is not
substantial

>>> l1, l2 = divide(irises, 1, 3.0)
>>> count(l1)
(33, 42)
>>> count(l2)
(17, 8)

Processing Iris
• We pick a

coordinate.

• We sort the tuple
values in this
coordinate

• We make sure
that they are
unique

• We then create a
list of midpoints

sorted(tupla[1] for tupla in irises)
[2.0, 2.2, 2.2, 2.2, 2.3, 2.3, 2.3, 2.4,
2.4, 2.4, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5,
2.5, 2.5, 2.6, 2.6, 2.6, 2.6, 2.6, 2.7,
2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7, 2.7,
2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.8,
2.8, 2.8, 2.8, 2.8, 2.8, 2.8, 2.9, 2.9,
2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 2.9, 3.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
3.0, 3.0, 3.0, 3.1, 3.1, 3.1, 3.1, 3.1,
3.1, 3.1, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2,
3.2, 3.2, 3.3, 3.3, 3.3, 3.3, 3.4, 3.4,
3.4, 3.6, 3.8, 3.8]
>>> midpoints(tupla[1] for tupla in
irises)
[2.1, 2.25, 2.3499999999999996, 2.45,
2.55, 2.6500000000000004, 2.75,
2.8499999999999996, 2.95, 3.05,
3.1500000000000004, 3.25,
3.3499999999999996, 3.5, 3.7]

Processing Iris
• For each midpoint, we split the set and calculate the

weighted entropy of the resulting split

• We do this for all coordinates:

• And select the best gain: coordinate 2 with 4.75

>>> for i in range(4):
 print(i, find_best_value(irises, i))

0 (5.75, 0.1682616579400087)
1 (2.45, 0.0739610509320755)
2 (4.75, 0.7268460660521441)
3 (1.65, 0.6474763214577008)

Processing Iris
• We split into two lists: left and right

• left is almost completely Iris Versicolor

• right needs to be subdivided

>>> left, right = divide(irises, 2, 4.75)
>>> count(left)
(1, 44)
>>> count(right)
(49, 6)

Processing Iris
• Since the right set is already pretty homogeneous, the

gains are not as large as before

• Select coordinate 3 with value 1.75

>>> for i in range(4):
 print(i, find_best_value(right, i))

0 (7.0, 0.00522989837660498)
1 (3.25, 0.0031757407862335607)
2 (5.05, 0.041343407685332456)
3 (1.75, 0.07488163300231473)

Processing Iris
• We split the right list accordingly

• The list rightright looks good, but rightleft can be
improved

>>> rightleft, rightright = divide(right, 3, 1.75)
>>> count(rightleft)
(4, 5)
>>> count(rightright)
(45, 1)

Processing Iris
• We find the best way to split

• and split again in coordinate 2, but with value 5.05

>>> for i in range(4):
 print(i, find_best_value(rightleft, i))

0 (6.5, 0.10417849406014013)
1 (2.75, 0.007965292443227856)
2 (5.05, 0.24725764734341227)
3 (1.45, 0)

Processing Iris
• The results now fulfill our stopping criteria:

>>> rightleftleft, rightleftright = divide(rightleft, 2, 5.05)
>>> count(rightleftleft)
(1, 4)
>>> count(rightleftright)
(3, 1)

Processing Iris
• We summarize

(and use the
names of the
columns instead
of the number)

petal
length
< 4.75

yes no

Virginica

Versicolor petal width
< 1.75

petal
length
< 5.05

Virginica Versicolor

yes

yes

no

no

