
Solutions Midterm Algorithms

Problem 1: Convert the following NFA with epsilon moves to a DFA. For this, give the
transition table, specify the starting state and the accepting states.

Starting state is {A}, accepting states are {A} and {A,B,C}. 

State 0 1

{A} {B} {B,C}

{B} {B,C} {B,C}

{B,C} {B,C} {A,B,C}

{A,B,C} {B,C} {A,B,C}

A B

C

Start

0

ε
1

0,11

Problem 2: Use the Master Theorem (if possible) on the following recursions: (If the MT cannot
be applied, just say so.)

a.

b.

(a) Compare with . Since

,

we have . Select and set . Then

and still . We are in Case 1 of the MT. This implies .

(b) We compare with . Notice that and pick positive but small
enough such that . Then

.

Therefore, . Because ,

the regularity condition is fulfilled. Therefore, we are in Case 3 of the MT and have
. 

T (n) = 2T (n /2) + log(n)
T (n) = 3T (n /4) + n log(n)

log(n) nlog2(2) = n1/2

lim
n→∞

n
log n

= lim
n→∞

1
2 n− 1

2

n−1
= lim

n→∞

1
2

n
1
2 = ∞

log n = o(n) 0 < ϵ < 1/2 c =
1
2

− ϵ > 0

lim
n→∞

nc

log n
= lim

n→∞

cnc−1

n−1
= lim

n→∞
cnc = ∞

log(n) = o(nc) T (n) = Θ(n)

n log(n) nlog4(3) log4(3) < 1 ϵ
c = log4(3) + ϵ < 1

lim
n→∞

n log(n)
nc

= lim
n→∞

n 1
n + log(n)

cnc−1
= lim

n→∞

1 + log(n)
cnc−1

= lim
n→∞

(
1
c

nc−1 +
log(n)
cnc−1

)

= 0 +
1
c

lim
n→∞

log(n)
nc−1

=
1
c

lim
n→∞

n−1

(c − 1)nc−2
=

1
c(c − 1)

lim
n→∞

n1−c = ∞

nc = Ω(n log(n)) a f (n /b) = 3
n
4

log(
n
4

) ≤ 3
n
4

log(n) ≤
3
4

f (n)

T (n) = Θ(n log(n))

Problem 3: The maximum subarray problem is to find a contiguous subarray in an array of
numbers whose sum is the largest. For example, for , we find
the maximum subarray to be the subarray . Just picking the positive
numbers would not count, because the subarray has to be contiguous. In Python, the subarray
has to be a simple slice.

First approach: We calculate the sum of each subarray.

def sub(array):
 best = - MAXINT
 besti, bestj = 0,0
 for i in range(len(array)):
 for j in range(i+1, len(array)):
 if(sum(array[i:j])> best:
 best = sum(array([i:j])
 besti, bestj = i, j

What is the runtime of this algorithm for an array of length ?

Let the length of the array be . The inner for loop has first iterations, then , and

so on. Therefore, the outer loop has (Little

Gauss) iterations and the algorithm is quadratic in .

[−2, − 5,6, − 2, − 3,1,5, − 6]
[6, − 2, − 3,1,5]

n

n n − 1 n − 2
(n − 1) + (n − 2) + … + 2 + 1 =

n(n − 1)
2

n

Second approach (Divide and conquer):

1. Divide the array in two halves

2. Return the maximum of the following three numbers:

(a) The maximum subarray of the first half

(b) The maximum subarray of the second half

(c) The maximum subarray that starts in the first half and ends in the second half.

i. Start at the midpoint, given by index . Then calculate for all indices larger than
the sum of the array and find the maximum.

ii. Start at the midpoint, given by index . Then calculate for all indices smaller than
 the sum of the array and find the maximum.

iii. Combine the two maximizing subarrays for the maximum subarray that starts in the
first half and ends in the second half.

Write a recurrence relation for the runtime of this algorithm depending on the length of the
array.

Part iii has one sum calculation for each index above and for each index below the midpoint,
which is . Parts i and ii are just recursive calls on arrays slightly smaller than the length
divided by 2. We get

.

We can approximate by (and solve it with case two of the MT).

A

m r m
A[m : r + 1]

m l
m A[l : m]

Θ(n)

T (n) = {2T (⌊n /2⌋) + Θ(n) if nodd
T (n /2) + T (n /2 − 1) + Θ(n) if n even

T (n) = 2T (n /2) + Θ(n)

Problem 4: Delete 'gar' from the following B-tree. (Prefer left rotates over right rotates over
splits over merges). Show each step of your restructuring.

First, we exchange 'gar' with its predecessor 'ewe' and delete it:

We need to merge the two leaf nodes

Then we need to do a left rotate in order to get the final solution

emu gnu

cow doe gar hog moa

ant bee cat dog eel ewe gib goa hen jay kea owl ray

cat doe

ant bee cow dog eel gib goa hen jay kea owl ray

ewe hog moa

emu gnu

cat doe

ant bee cow dog eel ewe gib goa hen jay kea owl ray

hog moa

emu gnu

cat doe

ant bee cow dog eel ewe gib goa hen jay kea owl ray

gnu moa

emu hog

Extra Credit Problem:

It takes a factor of 2 cycles to reach a nano-second, 1000 to reach a micro-second, another
1000 to reach milli-second, and then 10 to reach the average random access time for a block
on the hard drive for a total of cycles. 2 ⋅ 107

