Overview

- A generic recipe for computation
 - Should work on broad category of computers
 - E.g. Algorithms for quantum computers, biological computers are / would be different

- Algorithms \neq Implementation
 - An algorithm can be implemented more or less efficiently

- Correctness
 - Can we prove that the answer given by an algorithm is correct?
 - via Automated proof methods
 - via human reasoning
 - Often involves pseudo-code

- Correctness of Implementation
 - Formal methods
 - ●

- Performance
 - Needs to be measured independently of implementation
 - Depends on the "instance size"
 - Many problems in CS become proportionally <u>more</u> <u>difficult</u> as they grow
 - Use an "asymptotic" notation to capture behavior as we "scale up"

Impossibility Results

- Can all problems be solved with a computer
 - Depends on the type of computer, but:
 - In a very generic computing model, there are problems that cannot be solved

Impossibility Results

- Are there problems that can become prohibitively expensive?
- Answer: Probably yes. There are classes of problems that become intractable as they scale up