Homework Module 4:

- (1) Use induction to show that the recurrence $a_i = 2a_{i-1} + 1$ is solved by $a_i = 2^i 1$.
- (2) Use induction to show that the recurrence $a_i = 2/5a_{i-1} + 3/5a_{i-2}$, $a_0 = 0$, $a_1 = 1$ is

solved by $a_i = -\frac{(-3)^i - 5^i}{8 \cdot 5^{i-1}}.$

- (3) Use the substitution method to show that T(n) = T(n-1) + n + 1 implies that $T(n) \le Cn^2$ as long as $C \ge 1$ and $C \ge T(1)$.
- (4) Draw a recursion tree for the recurrence $T(n) = 3T(\lfloor n/2 \rfloor) + n$. Derive a solution of the recurrence from the tree. For simplicity, you can assume that *n* is a power of two.