Solving Recurrence Relationships

Thomas Schwarz, SJ

- You should have seen this before!
- We want to sort an array
	- Idea of quicksort:
		- Pick a random pivot
		- Divide the array in elements smaller and larger than the pivot
		- Recursively order the two subarrays
		- Combine the two subarrays into one

INEFFECTIVE SORTS

xkcd.com/1185

- Example of a divide and conquer algorithm:
	- We divide the array into two parts i.e. we divide the problem into sub-problems
	- We recursively sort the sub-arrays, i.e we solve the sub-problems
	- We combine the sub-arrays, i.e. we conquer the problem by combining the sub-problems

- Ideally: Pivot is always in the middle
	- Then time T to sort n elements is
		- $T(n) = T(n/2) + T(n/2) + cn$
			- Here c is a constant representing the time to choose a pivot, divide the array, and to combine the arrays.
				- Dividing the array means looking at all elements
		- An exact formula would use rounding down and also take cognizance of the intricacies of dividing and combining
			- $T(n) = 2T(\lfloor n/2 \rfloor) + O(n)$

- How to solve a recurrence $T(n) = T(n/2) + T(n/2) + cn$
	- Notice, that there is no base case.
		- This is typically, $T(1)$ is always some constant

- How do we solve a recurrence like this?
	- Use Mathematica or a similarly sophisticated math tool
	- Guess a solution and use a proof by induction
	- Use substitution until you see a pattern and then prove the pattern by induction
	- Use a recurrence tree
	- Use the Master Theorem (from the book)

• Substitution Method:

$$
T(n) = 2T(\frac{n}{2}) + cn
$$

= $2\left(2T(\frac{n}{4} + c\frac{n}{2}) + cn = 4T(\frac{n}{4}) + cn + cn$
= $4\left(2T(\frac{n}{8}) + c\frac{n}{4}\right) + cn + cn = 8T(\frac{n}{8}) + cn + cn + cn$
= \vdots
= $C + cn + ... + cn + cn + cn$

- $T(n) = C + cn + ... + cn + cn + cn$
- How many addend cn?
	- We get an addend each time we divide by 2
	- Can divide $n \log_2(n)$ before getting 1
	- Therefore:
	- $T(n) = log_2(n)cn + C = O(log(n)n)$

- Now we need to prove it.
	- We start with the induction step
		- Hypothesis: $T(n) \leq C \log_2(n)n$
		- To show: $T(n + 1) \le C \log_2(n + 1)(n + 1)$
	- That is awkward, so we do not do this
	- Use STRONG INDUCTION instead
		- Hypothesis: $T(m) \leq C \log_2(m)m$ for all $m < n$
		- To show: $T(n) \leq C \log_2(n)n$
	- This one can use the recursion
	- Notice, we did not specify $C > 0$

We calculate:

$$
T(n) = 2T(\frac{n}{2}) + cn
$$
 (Recurrence formula with a different c)
\n
$$
\leq C \log_2(\frac{n}{2}) \frac{n}{2} + cn
$$
 (Using the strong hypothesis)
\n
$$
= C(\log_2(n) - 1) \frac{n}{2} + cn
$$

\n
$$
\leq C(\log_2(\frac{n}{2}) \frac{n}{2} + cn
$$

\n
$$
= C \log_2(n)n + (cn - C \log_2(n) \frac{n}{2})
$$

 $\leq C \log_2(n)n$ IF the right parenthesis is negative

• by adding and subtracting the desired expression

• The correction should be negative:

$$
cn - C \log_2(n) \frac{n}{2} \le 0
$$

$$
\iff cn \le C \log_2(n) \frac{n}{2}
$$

 \iff 2*c* $\leq C \log_2(n)$

- which is true if $n \geq 4$ and $C \geq c$.
- We also need to make C large enough so that $T(2) \leq C$.
- Exact analysis is mathematically more involved!

Tower of Hanoi

- *• ⁿ* disks of *n* different parameters are on Peg A.
- Need to move them to Peg C subject to
	- Can only one disk at a time
	- Can only place smaller disk on bigger ones

Tower of Hanoi: Algorithm

- **Recursive Solution**
	- One disk: Just move the disk (1 move)
	- General case: Move top *n*-1 disks from A to C. Move remaining disk to B. Move *n*-1 disks from C to A

$$
\bigoplus_{\mathbf{A}} \begin{array}{c} \mathbf{A} \\ \mathbf{B} \\ \mathbf{C} \end{array}
$$

Tower of Hanoi: Evaluation

- If $T(n)$ is the number of moves for *n* disks, then
	- $T(1) = 1$ $T(n + 1) = 2T(n) + 1$

Solving the recurrence

 $T(n) = 2T(n - 1) + 1$ $= 2(2T(n-2) + 1) + 1 = 4T(n-2) + 2 + 1$ $= 2³T(n-3) + 4 + 2 + 1$ $= 2⁴T(n-4) + 2³ + 2² + 1$ $=$ \vdots $= 2^{n-1} + 2^{n-2} + ... + 2^2 + 2^1 + 2^0$ $= 2^n - 1$

Tower of Hanoi: Proof

- Given the recurrence relation $T(1) = 1$; $T(n + 1) = 2T(n) + 1$
- Show that $T(n) = 2^n 1$
- Proof by induction:
	- Base case: For $n = 1$, we have $T(1) = 1 = 2^1 1$
- Induction step:
	- Hypothesis: $T(n) = 2^n 1$
	- To show: $T(n + 1) = 2^{n+1} 1$.
	- Proof:

 $T(n + 1) = 2T(n) + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 2 + 1 = 2^{n+1} - 1$

The Upper Bound Trap

- What is wrong here.
	- Show that $T(1) = 1$; $T(n + 1) = 2T(n) + 1$ implies $T(n) \le 2^n$
	- Induction base: same as before
	- Induction step:
		- Hypothesis: $T(n) = 2^n$
		- To show: $T(n + 1) \le 2^{n+1}$
		- Proof Attempt:

 $T(n + 1) = 2T_n + 1$ (recurrence) $\leq 2 \cdot 2^n + 1$ (induction hypothesis) $= 2^{n+1} + 1$

• And we are stuck

The Upper Bound Trap

- However, we can prove a **stronger** proposition and the proof goes through:
	- Show that $T(1) = 1;$ $T(n + 1) = 2T(n) + 1$ implies $T(n) \leq 2^n - 1$
	- Induction base: same as before
	- Induction step:
		- Hypothesis: $T(n) \leq 2^n 1$
		- To show: $T(n + 1) \le 2^{n+1}$
		- Proof:

 $T(n + 1) = 2T_n + 1$ (recurrence) $\leq 2 \cdot (2^n - 1) + 1$ (induction hypothesis) $= 2^{n+1} - 1$

• And we are done

Linear Recurrence Examples

• Pell numbers

•
$$
P_0 = 0
$$
, $P_1 = 1$, $P_n = 2P_{n-1} + P_{n-2}$

- Example of linear recurrence
	- Assume solution is of the form a^n
	- This results in

•
$$
a^n = 2a^{n-1} + a^{n-2}
$$

• We can divide by a^{n-2} to get

$$
\bullet \ \ a^2 = 2a + 1
$$

•
$$
\Rightarrow
$$
 $a^2 - 2a + 1 - 2 = 0 \Rightarrow (a - 1)^2 = 2$

• This means $a = 1 - \sqrt{2}$ or $a = 1 + \sqrt{2}$

Linear Recurrence Example

- Reversely, for these $a : a^n = 2a^{n-1} + a^{n-2}$
- Solutions are given by linear combinations
	- with $a_1 = 1 + \sqrt{2}$, $a_2 = 1 \sqrt{2}$
	- $P_n = ca_1^n + da_2^n$
- Now we need to fit the two initial conditions

•
$$
ca_1^0 + da_2^0 = 0, ca_1^1 + da_2^1 = 1
$$

• The first equation gives $c = -d$, the second gives

$$
c(1 + \sqrt{2}) - c(1 - \sqrt{2}) = 1
$$
, which is equivalent to $c = \frac{1}{2\sqrt{2}}$

1

Thus, the closed form is
$$
P_n = \frac{(1 + \sqrt{2})^n + (1 - \sqrt{2})^n}{2\sqrt{2}}
$$

- Let's look at $T(n) = \sqrt{nT(\sqrt{n}) + n}$.
- First try: $T(n) = O(n \log n)$
	- Assume $T(n) \leq Cn \log n$
	- Induction step:

•
$$
T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n
$$
 (recurrence)

$$
\bullet \qquad = \sqrt{n} C \sqrt{n} \log(\sqrt{n}) + n \quad \text{(ind. hyp.)}
$$

$$
= Cn \frac{1}{2} \log n + n
$$
 (algebra)

• $\leq Cn \log(n)$ (if $n \leq n - \log n$) *C* $\frac{1}{2} \log n$

- Condition $n \leq n \log n$ is true if and only if *C* $\frac{1}{2} \log n$
	- \bullet 1 \leq *C* $\frac{1}{2} \log(n)$
- which is always true if n is large enough
- This usually means that we were not aggressive enough

- Can we prove that $T(n) = \Omega(n \log n)$?
	- If we assume $T(n) \geq Dn \log(n)$, what happens

•
$$
T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n
$$
 (Recurrence)

$$
\bullet \qquad \geq \sqrt{n} \cdot D\sqrt{n} \log(\sqrt{n}) + n \quad (\text{l. H.})
$$

$$
= \frac{D}{2}n\log(n) + n
$$

$$
\sum D_n \log(n) \text{ only if } 1 > \frac{D}{2} \log(n)
$$

• But this is never true for large *n*

- Let's try whether $T(n) = \Theta(n)$.
	- Your turn: Show that $T(n) \geq n$.

• Solution:

•
$$
T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n \ge n
$$

- But can we show $T(n) = O(n)$?
- Your turn

• Solution:

•
$$
T(n) = \sqrt{n}T(\sqrt{n}) + n
$$

$$
<\sqrt{n}C\sqrt{n} + n
$$

recurrence

$$
\bullet \qquad \leq \sqrt{n} C \sqrt{n} + n \qquad \text{I.H.}
$$

$$
\mathcal{L}^{\mathcal{L}}(\mathcal{L}^{\mathcal{L}})
$$

 \bullet $=$ $Cn + n$ algebra

$$
\bullet \qquad = C(n+1)
$$

$$
\bullet \qquad \preceq Cn
$$

- Need something between n and $n \log(n)$
	- Let's try $T(n) = \Theta(n \log(\log(n)))$
		- $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$ (recurrence)

•
$$
\leq \sqrt{n} \cdot C\sqrt{n} \log(\log(\sqrt{n})) + n
$$

$$
= Cn \log(\frac{\log(n)}{2}) + n
$$

- $= Cn \log(\log(n)) - Cn \log(2) + n$
- \bullet = $Cn \log(\log n) Cn + n$ (log base 2)
- which works with $C > 1$, $T(n) = O(n \log(\log(n))$
- (For the induction base we can pick C large enough)

- Your turn:
	- Show $T(n) = \Omega(n \log(\log(n)))$

• Solution:

•

•
$$
T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n
$$
 (recurrence)

$$
\bullet \qquad \geq \sqrt{n} \cdot D\sqrt{n} \log(\log(\sqrt{n})) + n
$$

$$
=Dn\log(\frac{\log(n)}{2})+n
$$

$$
\bullet \qquad = Dn \log(\log(n)) - Dn \log(2) + n
$$

- \bullet = $Dn \log(\log n) Dn + n$ (log base 2)
- which works if $D \leq 1$.