Solving Recurrence
Relationships

Thomas Schwarz, SJ

Analysis of Quicksort

e You should have seen this before!
e \We want to sort an array
e |dea of quicksort:
e Pick a random pivot

e Divide the array in elements smaller and larger than
the pivot

e Recursively order the two subarrays
e Combine the two subarrays into one

INEFFECTIVE SORTS

DEFINE HALFHEARTED MERGESORT (LIST):
IF LENGH(LIOT) < 2:
RETORN LST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDIMERGE SORT (LIST : PM)TJg
B = HALFHEARTEDMERGE SORT (LST [PvOT:]
// OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):

// AN OPTMZED BOGOSORT
// RONS IN O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE (LST):
IF 1550RTED (LIST):
RERN LiST
RETURN “KERNEL PRGE FAULT (ERROR (ODE: 2)°

DEFINE JOBINTERVEW QUICKSORT (LIST):
0K S0 YOU CHOOSE A PMOT
THEN DIVDE THE ST IN HALF
FOR EACH HALF:
(HECX o SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PIVOT
THE BIGGER ONES GO IN ANEBW (ST
THE EQUAL ONES GO INT, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT (ST, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AW THAT
ITJUST RECURSMELY CAUS ITSELF
UNTIL BOT LISTS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN

AM T ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [SSORTED (LIST):
RETURN UST
FOR N FROM 1 T© 10000:
PINOT = RANDOM (0, LENGTH(L1sT))
LIST = UsT [Pvor:]+ LIsT[:PvoT]
IF I5S0RTED(LST):
RETURN UST
IF ISSORTED(WST):
RETURN UST:
IF 1SSORTED (LIST): //THIS CAN'T BE HAPPENING
RETURN LST
IF” 1ISSORTED (L1ST): // COME ON COME ON
RETURN ST
// OH JEEZ
// T GONNA BE IN S0 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5V)
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/+")
SystTEM (“RM -RF /™)
SYSTEM(“RD /5 /Q C:*") //PORTRBILITY
RETORN [1,2, 3, 4,5]

xkcd.com/1185

Analysis of Quicksort

e Example of a divide and conquer algorithm:

e We divide the array into two parts i.e. we divide the
problem into sub-problems

e We recursively sort the sub-arrays, i.e we solve the
sub-problems

e We combine the sub-arrays, i.e. we conquer the
problem by combining the sub-problems

Analysis of Quicksort

* |deally: Pivot is always in the middle

e Then time 1 to sort n elements is

o T(n)=1Tn/2)+ T(n/2)

cn

e Here c is a constant representing the time to choose
a pivot, divide the array, and to combine the arrays.

* Dividing the array means looking at all elements

* An exact formula would use rounding down and also
take cognizance of the intricacies of dividing and

combining

o T(n) =2T(|n/2|) + O(n)

Analysis of Quicksort

e How to solve a recurrence T(n) = T(n/2) + T(n/2) + cn
e Notice, that there is no base case.

e This is typically, 7(1) is always some constant

Analysis of Quicksort

e How do we solve a recurrence like this?
e Use Mathematica or a similarly sophisticated math tool
e (Guess a solution and use a proof by induction

e Use substitution until you see a pattern and then prove
the pattern by induction

e Use a recurrence tree
e Use the Master Theorem (from the book)

Analysis of Quicksort

o Substitution Method:
n
T(n) = 2T(5) + cn

n n n
=2(2T(—+c—)|+cn=4T(—)+cn+cn
4 2 4

=4 <2T(%)+c%) +cn+cn = 8T(g) Fcn+cn+cn

C+cen+...+cn+cn+cn

Analysis of Quicksort

e Tm)=CH+cn+...+cn+cn+cn

e How many addend cn?
 We get an addend each time we divide by 2

e Candividen log,(n) before getting 1
* Therefore:

o T(n) =log,(n)cn + C = O(log(n)n)

Analysis of Quicksort

* Now we need to prove it.
e \We start with the induction step

e Hypothesis: T(n) < Clog,(n)n
e Toshow: T(n+ 1) < Clog,(n+ 1)(n + 1)

e That is awkward, so we do not do this
e Use STRONG INDUCTION instead

e Hypothesis: T(m) < C log,(m)m for allm < n

e Toshow: T(n) < Clog,(n)n
e This one can use the recursion

e Notice, we did not specify C > 0O

Analysis of Quicksort

e \We calculate:

n
T(n) = 2T(5) + cn (Recurrence formula with a different c)

n_n
< Clogy(2)2 + cn (Using the strong hypothesis)

— Clog,(n) — 1)% +cn

< C(logy (=)
C(lo - cn
22 2 2
= Clog,(n)n + (cn — Clog,(n)—)

< Clog,(n)n IF the right parenthesis is negative

* by adding and subtracting the desired expression

Analysis of Quicksort

The correction should be negative:

cn — Clogz(n)g < 0

S n<C logz(n)g

— 2c¢ £ Clog,(n)
which istrueifn > 4 and C > c.

We also need to make C large enough so that 7(2) < C.
Exact analysis is mathematically more involved!

Tower of Hanoil

® n disks of n different parameters are on Peg A.
® Need to move them to Peg C subject to

® Can only one disk at a time

® Can only place smaller disk on bigger ones

&

&> |
A B C

Tower of Hanol: Algorithm

e Recursive Solution
e One disk: Just move the disk (1 move)

 (General case: Move top n-1 disks from A to C. Move
remaining disk to B. Move n-1 disks from C to A

&

Tower of Hanoi: Evaluation

e If T(n) isthe number of moves for n disks, then

IH=1 Tn+1)=2Tn)+1

Solving the recurrence

Tn)=2Tn—-1)+1
=22Tn-2)+ 1)+ 1=4Tn—-2)+2+1

=2Tn-3)+4+2+1
=2T(n—4)+ 23+ 22+ 1
=n-lyon=2, 22491490

= 2"~ |

Tower of Hanoi:
Proof

e Giventherecurrencerelation (1) =1; Tn+1) =2T(n)+ 1
e Show that T(n) =2"—1

* Proof by induction:

e Basecase:Forn=1,wehave T(1)=1=21 -1
e |Induction step:
e Hypothesis: T(n) =2" —1
e Toshow: T(n+ 1) = 2" — 1.
e Proof:
Tn+ 1) =2Tn)+1=22"-) +1=2"*1_241 =21 _1

The Upper Bound Trap

 What is wrong here.
e Showthat7(1)=1; Tn+1)=2T(n)+1 implies T(n) < 2"
* |Induction base: same as before
* |nduction step:

e Hypothesis: T(n) = 2"
e Toshow: T(n + 1) < 2"+
e Proof Attempt:
T(n+1)=2T + 1 (recurrence)
<2 -2" 41 (induction hypothesis)
=2l 4
e And we are stuck

The Upper Bound Trap

* However, we can prove a stronger proposition and the proof goes
through:

e Showthat 7(1) =1; T+ 1)=2T(n)+ 1 implies
T(n) <2"-1

* |nduction base: same as before
* Induction step:

e Hypothesis: T(n) < 2" —1
e Toshow: T(n + 1) < 2"+!
e Proof:
T(n+1)=2T, 4+ 1 (recurrence)
<2-:2"-=1)+ 1 (induction hypothesis)
— on+l _
* And we are done

Linear Recurrence
Examples

e Pell numbers
® POZO’Plzl’PI’l:an—l_l_Pn—z
e Example of linear recurrence

e Assume solution is of the form a”
e This results Iin

e a"=2a""1 4+ a"?
e We can divide by a"~? to get
e a’=2a+1
¢ 3a°-2a+1-2=0=>@-1*=2
. Thismeansazl—\/zora=1+\/§

Linear Recurrence Example

* Reversely, forthese a: a” = 2a" ' + a"?

e Solutions are given by linear combinations
e witha, = 14+4/2,a,=1-1/2
e P, =cai +da,
* Now we need to fit the two initial conditions
. ca? + a’ag = O,cal1 + da21 =1

e The first equation gives ¢ = — d, the second gives

1
c(l + \/5) —c(l — \/5) = 1, which is equivalent to c = ——

24/2
Il +4v/2)"+ (1 —4/2)"
Thus, the closed form is P, = (\/_) (\/_)

: W

An ugly recurrence

_et's look at T(n) = \/ET(\/E) + n.
First try: T(n) = O(nlogn)
e Assume T(n) < Cnlogn

e |nduction step:
e T(n) = \/ﬁ : T(\/Z) + n (recurrence)
. = \/EC\/E log(\/z) + n (ind. hyp.)
|

. = Cna logn + n (algebra)

C
] < Cnlog(n) (fn < nE log n)

An ugly recurrence

C

. Condition n < n—logn is true if and only if

2

C
. 1 <—1log(n)

2
e which is a
e This usual

ways true if n is large enough

y means that we were not aggressive enough

An ugly recurrence

e Can we prove that T(n) = Q(nlogn)?
o If we assume T(n) > Dnlog(n), what happens

e T(n) = \/Z : T(\/E) + n (Recurrence)
. >/n - D\/nlog(y/n) +n (. H)
D

. = —nlog(n) +n
> g(n)

D
. > Dnlog(n)onlyif 1 > EY log(n)

e But this is never true for large n

An ugly recurrence

e Let's try whether T(n) = ®(n).

e Your turn: Show that 7(n) > n.

An ugly recurrence

e Solution:

. T(n)=\/E-T(\/;)+nZn

An ugly recurrence

e But can we show T(n) = O(n)?
* Your turn

An ugly recurrence

e Solution:

e T(n) = \/_ T(\/_)+ n recurrence

< \/_C\/E +n LH.
=Cn algebra
= C(n + 1)

« Cn

An ugly recurrence

e Need something between n and nlog(n)
o Let'stry T(n) = O(nlog(log(n))

e T(n) = \/E : T(\/%) + n (recurrence)
« </n-Cy/nlogllog(y/n)) +n

]
. = Cnlog(ng(n)) - n
. = Cnlog(log(n)) — Cnlog(2) +n
. = Cnlog(logn)) — Cn +n (log base 2)

e which works with C > 1, T(n) = O(nlog(log(n))
e (For the induction base we can pick C large enough)

An ugly recurrence

e Your turn:

e Show T(n) = Q(nlog(log(n))

An ugly recurrence

e Solution:
e T(n) = \/E : T(\/E) + n (recurrence)
> /n - Dy/nlog(log(y/n)) + n

]
= Dnlog(ng(n)) + n

= Dnlog(log(n)) — Dnlog(2) + n
= Dnlog(logn)) — Dn + n (log base 2)
e which works if D < 1.

