Solving Recurrence Relationships

Thomas Schwarz, SJ

- You should have seen this before!
- We want to sort an array
 - Idea of quicksort:
 - Pick a random pivot
 - Divide the array in elements smaller and larger than the pivot
 - Recursively order the two subarrays
 - Combine the two subarrays into one

INEFFECTIVE SORTS

DEFINE HALFHEARTED MERGESORT (LIST):	DEFINE FASTBOGOSORT(LIST):
IF LENGTH (LIST) < 2:	// AN OPTIMIZED BOGOSORT
RETURN LIST	// RUNS IN O(NLOGN)
PIVOT = INT (LENGTH (LIST) / 2)	FOR N FROM 1 TO LOG(LENGTH(LIST)):
A = HALFHEARTED MERGESORT (LIST[:PIVOT])	SHUFFLE(LIST):
B = HALFHEARTED MERGESORT (LIST[PIVOT:])	IF ISSORTED(LIST):
// UMMMMM	RETURN LIST
RETURN [A, B] // HERE. SORRY.	RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"
DEFINE JOBINTERNEW QUICKSORT (LIST): OK SO YOU CHOOSE A PIVOT THEN DIVIDE THE LIST IN HALF FOR EACH HALF: CHECK TO SEE IF IT'S SORTED NO, WAIT, IT DOESN'T MATTER COMPARE EACH ELEMENT TO THE PIVOT THE BIGGER ONES GO IN A NEW LIST THE BUGGER ONES GO IN A NEW LIST THE EQUAL ONES GO INTO, UH THE SECOND LIST FROM BEFORE HANG ON, LET ME NAME THE LISTS THIS IS UST A THE NEW ONE IS LIST B PUT THE BIG ONES INTO LIST B NOW TAKE THE SECOND LIST CALL IT LIST, UH, A2 WHICH ONE WAS THE PIVOT IN? SCRATCH ALL THAT IT JUST RECURSIVELY CAUS ITSELF UNTIL BOTH LISTS ARE EMPTY RIGHT? NOT EMPTY, BUT YOU KNOW WHAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES?	DEFINE PANICSORT(LIST): IF JSSORTED (LIST): RETURN LIST FOR N FROM 1 TO 10000: PIVOT = RANDOM(0, LENGTH(LIST)) LIST = LIST [PIVOT:] + LIST[:PIVOT] IF JSSORTED(LIST): RETURN LIST IF JSSORTED(LIST): RETURN UST: IF JSSORTED(LIST): //THIS CAN'T BE HAPPENING RETURN LIST IF JSSORTED(LIST): //COME ON COME ON RETURN LIST // OH JEEZ // I'M GONNA BE IN 50 MUCH TROUBLE LIST = [] SYSTEM("SHUTDOWN -H +5") SYSTEM("RM -RF -/") SYSTEM("RM -RF -/") SYSTEM("RD -S /Q C:*") //PORTABILITY

xkcd.com/1185

- Example of a divide and conquer algorithm:
 - We divide the array into two parts i.e. we divide the problem into sub-problems
 - We recursively sort the sub-arrays, i.e we solve the sub-problems
 - We combine the sub-arrays, i.e. we conquer the problem by combining the sub-problems

- Ideally: Pivot is always in the middle
 - Then time T to sort n elements is
 - T(n) = T(n/2) + T(n/2) + cn
 - Here *c* is a constant representing the time to choose a pivot, divide the array, and to combine the arrays.
 - Dividing the array means looking at all elements
 - An exact formula would use rounding down and also take cognizance of the intricacies of dividing and combining
 - $T(n) = 2T(\lfloor n/2 \rfloor) + O(n)$

- How to solve a recurrence T(n) = T(n/2) + T(n/2) + cn
 - Notice, that there is no base case.
 - This is typically, T(1) is always some constant

- How do we solve a recurrence like this?
 - Use Mathematica or a similarly sophisticated math tool
 - Guess a solution and use a proof by induction
 - Use substitution until you see a pattern and then prove the pattern by induction
 - Use a recurrence tree
 - Use the Master Theorem (from the book)

• Substitution Method:

$$T(n) = 2T(\frac{n}{2}) + cn$$

= $2\left(2T(\frac{n}{4} + c\frac{n}{2})\right) + cn = 4T(\frac{n}{4}) + cn + cn$
= $4\left(2T(\frac{n}{8}) + c\frac{n}{4}\right) + cn + cn = 8T(\frac{n}{8}) + cn + cn + cn$
= \vdots
= $C + cn + ... + cn + cn + cn$

- T(n) = C + cn + ... + cn + cn + cn
- How many addend *cn*?
 - We get an addend each time we divide by 2
 - Can divide $n \log_2(n)$ before getting 1
 - Therefore:
 - $T(n) = \log_2(n)cn + C = O(\log(n)n)$

- Now we need to prove it.
 - We start with the induction step
 - Hypothesis: $T(n) \leq C \log_2(n) n$
 - To show: $T(n+1) \le C \log_2(n+1)(n+1)$
 - That is awkward, so we do not do this
 - Use STRONG INDUCTION instead
 - Hypothesis: $T(m) \le C \log_2(m)m$ for all m < n
 - To show: $T(n) \leq C \log_2(n)n$
 - This one can use the recursion
 - Notice, we did not specify C > 0

• We calculate:

$$T(n) = 2T(\frac{n}{2}) + cn \quad (\text{Recurrence formula with a different c})$$

$$\leq C \log_2(\frac{n}{2})\frac{n}{2} + cn \quad (\text{Using the strong hypothesis})$$

$$= C(\log_2(n) - 1)\frac{n}{2} + cn$$

$$\leq C(\log_2(\frac{n}{2})\frac{n}{2} + cn)$$

$$= C \log_2(n)n + (cn - C \log_2(n)\frac{n}{2})$$

 $\leq C \log_2(n) n$ IF the right parenthesis is negative

• by adding and subtracting the desired expression

• The correction should be negative:

$$cn - C \log_2(n) \frac{n}{2} \le 0$$
$$\iff cn \le C \log_2(n) \frac{n}{2}$$

 $\iff 2c \le C \log_2(n)$

- which is true if $n \ge 4$ and $C \ge c$.
- We also need to make C large enough so that $T(2) \leq C$.
- Exact analysis is mathematically more involved!

Tower of Hanoi

- *n* disks of *n* different parameters are on Peg A.
- Need to move them to Peg C subject to
 - Can only one disk at a time
 - Can only place smaller disk on bigger ones

Tower of Hanoi: Algorithm

- Recursive Solution
 - One disk: Just move the disk (1 move)
 - General case: Move top *n*-1 disks from A to C. Move remaining disk to B. Move *n*-1 disks from C to A

Tower of Hanoi: Evaluation

- If T(n) is the number of moves for *n* disks, then
 - T(1) = 1 T(n+1) = 2T(n) + 1

Solving the recurrence

T(n) = 2T(n-1) + 1= 2(2T(n-2) + 1) + 1 = 4T(n-2) + 2 + 1 $= 2^{3}T(n-3) + 4 + 2 + 1$ $= 2^{4}T(n-4) + 2^{3} + 2^{2} + 1$ = : $= 2^{n-1} + 2^{n-2} + \dots + 2^2 + 2^1 + 2^0$ $= 2^{n} - 1$

Tower of Hanoi: Proof

- Given the recurrence relation T(1) = 1; T(n + 1) = 2T(n) + 1
- Show that $T(n) = 2^n 1$
- Proof by induction:
 - Base case: For n = 1, we have $T(1) = 1 = 2^1 1$
- Induction step:
 - Hypothesis: $T(n) = 2^n 1$
 - To show: $T(n + 1) = 2^{n+1} 1$.
 - Proof:

 $T(n+1) = 2T(n) + 1 = 2(2^n - 1) + 1 = 2^{n+1} - 2 + 1 = 2^{n+1} - 1$

The Upper Bound Trap

- What is wrong here.
 - Show that T(1) = 1; T(n+1) = 2T(n) + 1 implies $T(n) \le 2^n$
 - Induction base: same as before
 - Induction step:
 - Hypothesis: $T(n) = 2^n$
 - To show: $T(n + 1) \le 2^{n+1}$
 - Proof Attempt:

$$\begin{split} T(n+1) &= 2T_n + 1 \ \text{(recurrence)} \\ &\leq 2 \cdot 2^n + 1 \ \text{(induction hypothesis)} \\ &= 2^{n+1} + 1 \end{split}$$

• And we are stuck

The Upper Bound Trap

- However, we can prove a stronger proposition and the proof goes through:
 - Show that T(1) = 1; T(n + 1) = 2T(n) + 1 implies $T(n) \le 2^n 1$
 - Induction base: same as before
 - Induction step:
 - Hypothesis: $T(n) \le 2^n 1$
 - To show: $T(n + 1) \le 2^{n+1}$
 - Proof:

$$\begin{split} T(n+1) &= 2T_n + 1 \ \text{(recurrence)} \\ &\leq 2 \cdot (2^n-1) + 1 \ \text{(induction hypothesis)} \\ &= 2^{n+1} - 1 \end{split}$$

• And we are done

Linear Recurrence Examples

• Pell numbers

•
$$P_0 = 0, P_1 = 1, P_n = 2P_{n-1} + P_{n-2}$$

- Example of linear recurrence
 - Assume solution is of the form a^n
 - This results in

•
$$a^n = 2a^{n-1} + a^{n-2}$$

• We can divide by a^{n-2} to get

•
$$a^2 = 2a + 1$$

•
$$\Rightarrow a^2 - 2a + 1 - 2 = 0 \Rightarrow (a - 1)^2 = 2$$

• This means $a = 1 - \sqrt{2}$ or $a = 1 + \sqrt{2}$

Linear Recurrence Example

- Reversely, for these $a : a^n = 2a^{n-1} + a^{n-2}$
- Solutions are given by linear combinations
 - with $a_1 = 1 + \sqrt{2}$, $a_2 = 1 \sqrt{2}$
 - $P_n = ca_1^n + da_2^n$
- Now we need to fit the two initial conditions

•
$$ca_1^0 + da_2^0 = 0, ca_1^1 + da_2^1 = 1$$

• The first equation gives c = -d, the second gives

 $c(1+\sqrt{2}) - c(1-\sqrt{2}) = 1$, which is equivalent to $c = \frac{1}{2\sqrt{2}}$

Thus, the closed form is
$$P_n = \frac{(1+\sqrt{2})^n + (1-\sqrt{2})^n}{2\sqrt{2}}$$

- Let's look at $T(n) = \sqrt{n}T(\sqrt{n}) + n$.
- First try: $T(n) = O(n \log n)$
 - Assume $T(n) \leq Cn \log n$
 - Induction step:

•
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$
 (recurrence)

•
$$= \sqrt{n}C\sqrt{n}\log(\sqrt{n}) + n$$
 (ind. hyp.)

•
$$= Cn\frac{1}{2}\log n + n$$
 (algebra)

• $\leq Cn \log(n)$ (if $n \leq n \frac{C}{2} \log n$)

- Condition $n \le n \frac{C}{2} \log n$ is true if and only if
 - $1 \le \frac{C}{2}\log(n)$
- which is always true if n is large enough
- This usually means that we were not aggressive enough

- Can we prove that $T(n) = \Omega(n \log n)$?
 - If we assume $T(n) \ge Dn \log(n)$, what happens

•
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$
 (Recurrence)

•
$$\geq \sqrt{n} \cdot D\sqrt{n} \log(\sqrt{n}) + n$$
 (I. H.)

•
$$= \frac{D}{2}n\log(n) + n$$

•
$$\geq Dn \log(n)$$
 only if $1 > \frac{D}{2} \log(n)$

• But this is never true for large *n*

- Let's try whether $T(n) = \Theta(n)$.
 - Your turn: Show that $T(n) \ge n$.

• Solution:

•
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n \ge n$$

- But can we show T(n) = O(n)?
- Your turn

• Solution:

•
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$
 recu
• $<\sqrt{n}C\sqrt{n} + n$ I.H.

•
$$\leq \sqrt{n}C\sqrt{n} + n$$

= Cn + n

•
$$= C(n+1)$$

•
$$\not\leq Cn$$

- Need something between n and $n \log(n)$
 - Let's try $T(n) = \Theta(n \log(\log(n)))$
 - $T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$ (recurrence)
 - $\leq \sqrt{n} \cdot C\sqrt{n} \log(\log(\sqrt{n})) + n$ • $= Cn \log(\frac{\log(n)}{2}) + n$
 - $= Cn \log(\log(n)) Cn \log(2) + n$
 - $= Cn \log(\log n)) Cn + n$ (log base 2)
 - which works with C > 1, $T(n) = O(n \log(\log(n)))$
- (For the induction base we can pick C large enough)

- Your turn:
 - Show $T(n) = \Omega(n \log(\log(n)))$

• Solution:

•
$$T(n) = \sqrt{n} \cdot T(\sqrt{n}) + n$$
 (recurrence)

•
$$\geq \sqrt{n} \cdot D\sqrt{n} \log(\log(\sqrt{n})) + n$$

$$= Dn \log(\frac{\log(n)}{2}) + n$$

•
$$= Dn \log(\log(n)) - Dn \log(2) + n$$

- $= Dn \log(\log n)) Dn + n$ (log base 2)
- which works if $D \leq 1$.