
Homework: Algorithms
1. Use the Master Theorem (if possible) to solve the following recurrences.

1. .

2. .

3.

4.

2. Given the following divide and conquer algorithms, describe their run times with a
recurrence relation.

T (n) = 4T (n /3) + log(n)n
T (n) = 3T (n /3) + n
T (n) = 2T (n /2) + n log(n)
T (n) = 16T (n /4) + n

def find(array):
 """array is an array of floating point numbers"""
 if len(array) = 1:
 return array[0]
 for i in range(0,len(array),2):
 if array[i]<array[i+1]:
 array[i], array[i+1] = array[i+1],array[i]
 return min(array[0:len(array):2]), max(array[1:len(array):2])

def find(array, lo, hi):
"""array is an array of integers.
 lo and ho are indices and count is a function
 and count(array, lo, hi, ele) takes c*n time"""
 if lo>hi: return 0;
 elif lo==hi: return array[lo]
 else:
 mid = (lo+hi)//2
 x = find(A, lo, mid)
 y = find(A, mid+1, lo)
 if x==y: return x
 if x>0:
 if count(A, lo, hi, x) > (hi-lo+1)//2:
 return x
 if y>0:
 if count(A, lo, hi, y) > (hi-lo+1)//2:
 return y

3. You are given a chess-board of size with one field marked. Find a divide-and-
conquer algorithm that covers the whole chess-board with the exception of the marked
elements with pieces that look like the one below:

Figure 1: Chess board with one marked field

Figure 2: Chess board with a piece in the middle. This constitutes a hint.

2n × 2n

