
Homework 4 Solutions: 
Problem 1: 

For each of the following recurrences, decide whether the Master Theorem (as in the book, not 
as in Wikipedia) can be applied and if yes, then apply it. Show your work. Identify clearly the 
parameters  and  and define the function . State whether the MT applies. Define the 
power of  with which you compare  


(a) 


Using the MT and its notation, we have Thus, 

. With ,  and therefore .


(b) 


Using the MT and its notation, we have . Thus,  
. With , we have . We need to evaluate the extra 

condition: , thus .


(c) 


We have  and  so that because of , we have to compare  with 

.  As ,  and so we can 

only be in Case 3. However,  , for any 

, , so that we are in between Cases 2 and 3. Therefore, the MT 
does not apply.


(d) 


We have . Thus, MT does not apply.


(e) 

We have  and . However,  is not a positive function, so the MT does not 
apply.


(f) 


a b f (n)
n f (n) .

T (n) = 3T (n /2) + n

a = 3, b = 2, f (n) = n . logb(a) = log2(3)
≈ 1.585 ϵ = .5 f (n) = n = O(nlog2(3)−ϵ) T (n) = Θ(nlog2(3))

T (n) = 3T (n /4) + n2

a = 3, b = 4, f (n) = n2 logb(a) = log4(3)
≈ 0.792 ϵ = 0.1 f (n) = n2 = Ω(nlogb(a)+ϵ)

a f (n /b) = 3(n /4)2 =
3n2
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ϵ > 0 n log n ∉ Ω(n1/2+ϵ)
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3
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3
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a = 2/3

T (n) = 5T (n /7) + n cos(nπ)
a = 5 b = 7 n cos(nπ)

T (n) = 4T (
n
16

) + 2n



We have  and . Thus, . Obviously, . The 

regularity condition becomes . But the left side evaluates to 
 which is smaller than  whenever  Thus, . 


(g) 


We have  and . As , we compare  with . Because 

we have . However, for :


, so that 

. Thus, we are neither in case 2 nor 3 and the MT does not apply.


Problem 2: 
Show that  implies that  as long as  and 

.


We show this by induction. The induction base is already given. For the induction step, we 
calculate 

     

Now  , which gives the desired inequality.


Problem 3: 
Given the following Python program, prove the loop invariant  .


The loop invariant is true before the while loop starts. Assume it is true before an iteration with 

value . Thus . After the while loop,  and the new value 

of  is  According to the loop invariant, the value of acc should be . We 

a = 4 b = 16 logb(a) = log16 4 =
1
2

2n ∈ Ω(n1/2+1/2)

4( f (n /16)) ≤ cf (n)
4 ⋅ 2

n
16 = 22+ n

16 2n n > 2. T (n) = Θ(2n)
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n
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T (n) = T (n − 1) + n + 1 T (n) ≤ Cn2 C ≥ 1
C ≥ T (1)

T (n + 1) = T (n) + (n + 1) ≤ Cn2 + n + 1
C(n + 1)2 = Cn2 + 2Cn + C > Cn2 + 2n + 1
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def litgau(n): 
   i = 0 
   acc = 0 
   while i <= n: 
      i += 1 
      acc += i 
   return acc     



calculate , which 

is indeed the new value of acc.


Problem 4: 
Given the following C-program, show that the loop invariant  is true. Deduce the 
value of   after the function has run.


At the beginning, y=0, i=0, and , so that the loop invariant is true. Before 
the execution of the loop with a given value of , we have by assumption . During 
the execution of the loop,  is incremented by . The new value of  is 
Then  is also incremented. Therefore, the loop invariant holds. 

( j + 1)( j + 2)
2

=
j2 + 3j + 2

2
=

( j2 + j ) + 2( j + 1)
2

=
j2 + j

2
+ ( j + 1)

y = 2i − 1
y

2i − 1 = 1 − 1 = 0
i y = 2i − 1

y 2i y 2i − 1 + 2i = 2i+1 − 1
i

extern int i; 

y=0; 
for(i=0; i<=n; i++)	 { 
   y += pow(2,i);  
} 
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