
Homework 7 Solutions
Problem 1:
You were not required to develop software. So, this solution exceeds what is expected of
you.

The sub-problems for the dynamic programming approach are the layout of a paragraph
consisting of a suffix of the array of words. The array of words is ￼ .

We define a function that calculates the space used by setting words ￼ on a
single line. Because we want to use memoization we need to get around the requirement that
keys for a dictionary have to be immutable. Our solution is to use the text, — the array of
words — as globals. This is bad programming practice and the best way around this is to use
classes.

The space function is simple (using list comprehension, which you need to know for a Python
Code interview):

@cache
def space(i,j):
 global text
 return sum([len(a) for a in text[i:j]]) + j-i-1

The subproblems we are going to use is setting the text starting with word ￼ , i.e. ￼ .

We can use a bottom-up approach, where we find the minimum costs ￼ to type-set ￼ .
We start with the last words. As long as ￼ fits into the last line, ￼ . Otherwise, we
break the text into two parts, ￼ and ￼ , but only if ￼ fits
into a single line. The costs of setting ￼ is the costs of setting ￼ , which is
the combined length of the words plus ￼ , plus the costs of type-setting ￼ , which
we already determined as ￼ . We chose the minimum as the value of ￼ .

best = {}

for j in range(len(text), 0, -1):
 if(space(j,len(text)+1)) < line_length:
 best[j] = 0
 else:
 possibilities = []
 for k in range(1,len(text)-j):
 if space(j, j+k) > line_length:
 break
 else:
 possibilities.append((space(j, j+k)- line_length)**2
 + best[j+k])
 best[j]=min(possibilities)

text = [w0, w1, w2, …, wn−1]

[wi, wi+1, …, wj−1]

wj text[j :]

bk text[k :]
text[k :] bk = 0

text[k : k + j] text[k + j :] text[k : k + j]
text[k :] text[k : k + j]

j − 1 text[k + j :]
bk+j bk

Our process proceeds backwards. With a bit more work (because the last line is different), we
could also try to work forwards. Finally, a more efficient implementation would not use a list of
possible values and then take the minimum.

	Problem 1:

