
Homework 9 Solutions 
Problem 1: 
We first create a list or dictionary of empty adjacency lists. This is mandatory for any algorithm 
and takes time ￼ . Then we go through the list or dictionary of adjacency lists. The lists 
are indexed by the source node and are a list of target nodes. For each target node, we add 

the source node to the adjacency list we just created. Here is a Python implementation which 
assumes that the adjacency lists are organized as a Python dictionary.


def opposite(adjlist): 
    result = {node: [] for node in adjlist.keys()} 
    for source in adjlist.keys(): 
        for target in adjlist[source]: 
            result[target].append(source) 
    return result 

The second step processes each edge exactly once. This is the minimum work that needs to 
be done and takes ￼ . This gives a total runtime for this algorithm and the minimum of 
any algorithm to ￼ .


Problem 2: 
We first run DFS trying to discover a back-edge. In the first part, there is none. A DFS run (they 
are not unique, but this one uses alphabetic order) gives
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Ordering by reversed finishing time, we get   g, j, k, o, n, m, i, h, l ,p f, e, d, c, b, a for a 
topological sort. 


For the second part, we again to a DFS. There are many different ways to do a DFS, again, we 
use alphabetic order to break ties. 


When we reach node g, we find a gray node among the adjacent nodes, so we now have a 
back-edge, indicated in green in the figure above. This gives us the cycle g-c-d. 


Problem 3: 
There are a number of Hamiltonian circuits in this graph. Here is one:
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Problem 4: 
We first count the number of edges between two groups of ￼ -subsets. A single node is 

connected to ￼  others, so that there are ￼  edges between two groups. There are ￼  

pairs of  ￼ -subsets, for a total for ￼  edges. 
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