
Homework 9 Solutions
Problem 1:
We first create a list or dictionary of empty adjacency lists. This is mandatory for any algorithm
and takes time ￼ . Then we go through the list or dictionary of adjacency lists. The lists
are indexed by the source node and are a list of target nodes. For each target node, we add

the source node to the adjacency list we just created. Here is a Python implementation which
assumes that the adjacency lists are organized as a Python dictionary.

def opposite(adjlist):
 result = {node: [] for node in adjlist.keys()}
 for source in adjlist.keys():
 for target in adjlist[source]:
 result[target].append(source)
 return result

The second step processes each edge exactly once. This is the minimum work that needs to
be done and takes ￼ . This gives a total runtime for this algorithm and the minimum of
any algorithm to ￼ .

Problem 2:
We first run DFS trying to discover a back-edge. In the first part, there is none. A DFS run (they
are not unique, but this one uses alphabetic order) gives

Θ(|V |)

Θ(|E |)
Θ(|V | + |E |) = Θ(max(|E | , |V |)

a b

e f

i j

m n

c d

g h

k l

o p

1,2 3,4 5,6 7,8

9,10 10,11 12,31 13,18

14,17

15,16

19,3020,21 22,29

23,2824,2725,26

Ordering by reversed finishing time, we get g, j, k, o, n, m, i, h, l ,p f, e, d, c, b, a for a
topological sort.

For the second part, we again to a DFS. There are many different ways to do a DFS, again, we
use alphabetic order to break ties.

When we reach node g, we find a gray node among the adjacent nodes, so we now have a
back-edge, indicated in green in the figure above. This gives us the cycle g-c-d.

Problem 3:
There are a number of Hamiltonian circuits in this graph. Here is one:

a b

e f

i j

m n

c d

g h

k l

o p

1, 2, 3, 4,

5,

A B C D

E F G H

I K L M

Problem 4:
We first count the number of edges between two groups of ￼ -subsets. A single node is

connected to ￼ others, so that there are ￼ edges between two groups. There are ￼

pairs of ￼ -subsets, for a total for ￼ edges.

k

k k × k (n
2)

k
k2n(n − 1)

2

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:

