Homework 9 Solutions

Problem 1:

We first create a list or dictionary of empty adjacency lists. This is mandatory for any algorithm

and takes time ®(| V' |). Then we go through the list or dictionary of adjacency lists. The lists
are indexed by the source node and are a list of target nodes. For each target node, we add
the source node to the adjacency list we just created. Here is a Python implementation which
assumes that the adjacency lists are organized as a Python dictionary.

def opposite(adijlist):
result = {node: [] for node in adjlist.keys{()}
for source in adjlist.keys():
for target in adjlist[source]:
result[target] .append(source)
return result

The second step processes each edge exactly once. This is the minimum work that needs to
be done and takes O(| E |). This gives a total runtime for this algorithm and the minimum of
any algorithmto O(| V| + |E|) = O(max(|E|,|V|).

Problem 2:

We first run DFS trying to discover a back-edge. In the first part, there is none. A DFS run (they
are not unique, but this one uses alphabetic order) gives

1,2 3,4 5,6 7,8

13,18

14,17

15,16

Ordering by reversed finishing time, we get g, j, k,o,n,m,i,h,1,pf, e, d,c, b,afora
topological sort.

For the second part, we again to a DFS. There are many different ways to do a DFS, again, we
use alphabetic order to break ties.

When we reach node g, we find a gray node among the adjacent nodes, so we now have a
back-edge, indicated in green in the figure above. This gives us the cycle g-c-d.

Problem 3:

There are a number of Hamiltonian circuits in this graph. Here is one:

R—O——®
(¢

3) C
(E\ \F:/\G\ \H)
O—f——W

KU

Problem 4:

We first count the number of edges between two groups of k-subsets. A single node is
n
connected to k others, so that there are k X k edges between two groups. There are (2>

_ kK*n(n—1)
pairs of k-subsets, for a total for T edges.

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:

