
Sample Midterm Solutions
Problem 1:
(a) There are ￼ ways to order the first row and ￼ ways to order the back row. There are two
ways to place a team in front and the other one in the back. This gives a total of ￼
arrangements. (The factor of 2 is arguable, as the problem can be read to say that one team
has to be in the front.)

(b) Assume we have a valid arrangement. If we interchange a pair of players consisting of the
front and the back player with another pair, then the new arrangement is also valid. Thus, we
can order the back rank and still have a valid arrangement.

(c) Starting with any valid arrangement, we can order the back rank. Assume we have two
pairs of players, ￼ and ￼ from the front-row team and ￼ and ￼ from the back-row team.
Assume that ￼ is standing in front of ￼ and ￼ is standing in front of ￼ . Thus, ￼ and
￼ . Assume further that ￼ . If ￼ , then we have the picture below.

First, ￼ and ￼ , so ￼ . Second, ￼ and ￼ , so ￼ . Thus, we can
interchange the positions of players ￼ and ￼ and still have a valid arrangement.

This means we can order the first row as well.

n! n!
2 ⋅ n! ⋅ n!

A B X Y
A X B Y A < X

B < Y X < Y B ≤ A

B ≤ A A < X B < X A < X X ≤ Y A < Y
A B

X Y

A B

X Y

AB

(d) Verifying all ￼ or ￼ possible arrangements takes super-exponential time. If we
order the two teams by height we use time ￼ for sorting each team and time ￼
for comparing the heights of the two players in position ￼.

Problem 2:
(a) To extract the maximum and minimum of four elements, we place the four elements into two
pairs and compare the pairs. The two larger of the pairs are compared to find the maximum
and the two smaller of the pairs are compared to find the minimum. This gives four
comparisons.

(b) If ￼ , then we have ￼ comparisons within the groups and twice ￼

comparisons for a total of ￼ .

If ￼ , then we still have ￼ comparisons within the groups, but now twice

￼ comparisons between the group maxima and minima. This gives a total of ￼

comparisons.

If ￼ , then the last group has two elements and we need one comparison to

determine maxima and minima. Thus, within the groups we have ￼ comparisons

and twice ￼ comparisons among the maxima and minima, respectively. This gives a total

of ￼ .

If ￼ , then the last group has three elements. To extract both maximum and

minimum of this group, we need three comparisons. Within the groups, we have ￼

comparisons. As we have ￼ groups, we have an additional ￼ comparisons

among the group maxima and minima. This gives a total of ￼ comparisons.

Problem 3:
The subsets of the states of the NFA are the possible states of the DFA.

n! ⋅ n! 2 ⋅ n! ⋅ n!
Θ(n log(n)) Θ(n)

i

n ≡ 0 (mod 4)
n
4

⋅ 4
n
4

− 1
6n
4

− 2 =
3n
2

− 1

n ≡ 1 (mod 4)
n − 1

4
⋅ 4

n
4

3
2

(n − 1)

n ≡ 2 (mod 4)
n − 2

4
⋅ 4 + 1

n − 2
4

3n
2

− 2

n ≡ 3 (mod 4)
n − 3

4
⋅ 4

n − 3
4

+ 1 2 ⋅
n − 3

4
3n
2

−
3
2

State On input 0 On Input 1

{A} {B} {A,B,C}

State

Problem 4:
Let ￼ be the runtime of the algorithm with ￼ being the difference hi-lo. Then ￼ .
Otherwise, ￼ as there are ￼ recursive calls on an array with ￼
elements.

Problem 5:
(a) The MT applies with ￼ and ￼ . We compare ￼ with ￼ where
￼ . We set ￼ and compare with ￼ . As

￼ ,

￼ and Case 1 of the MT applies. Thus, ￼

(b) The recurrence is not of the form of the MT.

 (c) The MT applies with ￼ and ￼ . The critical exponent is ￼ . Thus,

Case 2 of the MT applies and ￼ .

Problem 6:

{B} {A} {A,C}

{A,C} {B} {A,C}

{A,B,C} {A,B} {A,B,C}

{A,B} {A,B} {A,B,C}

On input 0 On Input 1State

T (n) n T (0) = const
T (n) = (n − 1)T (n − 1) n − 1 n − 1

a = 27 b = 3 f (n) = n2 nc

c = log3(27) = 3 ϵ = 1/2 n2.5

lim
n→∞

n2 log(n)
n2.5

= lim
n→∞

log(n)

n
=LH lim

n→∞

n
1
2 n

= lim
n→∞

1

2 n
= 0

f (n) = O(n3−ϵ) T (n) = Θ(n3)

a = 2 b = 4 c = log4(2) =
1
2

T (n) = Θ (n log(n))

ant ape bat bee bug cat cob dog elk fox gar goa hen olm owl pen ram ray roe teg yac

rat sow

orc

ox

pug

gib kitdzoboa

cod fly

To delete orc, we exchange it with its predecessor:

After deleting orc, we have an underflow. The only way to cure the underflow is by a right
rotate, where hen goes up and kit goes down:

We can delete “roe” directly, as it is located in a leaf node. No restructuring is needed.

To delete rat, we exchange it with its predecessor and then delete. This gives an underflow.

ant ape bat bee bug cat cob dog elk fox gar goa hen orc owl pen ram ray roe teg yac

rat sow

olm

ox

pug

gib kitdzoboa

cod fly

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ram ray roe teg yac

rat sow

olm

ox

pug

gib hendzoboa

cod fly

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ram ray teg yac

rat sow

olm

ox

pug

gib hendzoboa

cod fly

To remedy the underflow, we can try to rotate, but the only sibling has only one key in it. We
therefore need to merge the empty leaf and the leaf with ‘ray’. This is done by moving ‘ram’
downwards into the merged leaf.

Problem 7:
￼ , so level is 3 and split pointer is 2. 5 —> Bucket 5, 6 —> Bucket 6, 7 —>Bucket
7, 8—> Bucket 8, 9 —> Bucket 9, 10 —> Bucket 2.

Extra Problems
Problem 1:
(1) The number of comparisons needed to find the maximum of n values is ￼ .

(2) Divide the array into groups of eight (linear time work). Then determine the maxima of each

group (time is proportional to ￼) and put those maxima into an array. The apply the
algorithm recursively to the new array of maxima.

(3) This recurrence relation is given by ￼ with some constant ￼ .

(4) The critical value is ￼ We need to compare ￼ with ￼ . Obviously, for

any ￼ , ￼ . For regularity, we just observe that

 ￼ .

10 = 23 + 2

n − 1

n /8

T (n) = T (n /8) + Cn C
c = log8(1) = 0. Cn n0 = 1

ϵ, 0 < ϵ < 1 Cn = Ω(nϵ)
a f (

n
b

) = C
n
8

≤
1
2

Cn =
1
2

f (n)

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ray teg yac

ram sow

olm

ox

pug

gib hendzoboa

cod fly

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ram ray teg yac

sow

olm

ox

pug

gib hendzoboa

cod fly

Thus, Case 3 of the MT applies and we have ￼ . This is no surprise. More
interestingly, if we count the number of steps using the sorting network we get

 ￼ .

Problem 2:
The recursive call is on arrays of size 1/3 of the original array and there are five such calls. This
gives the recurrence

 ￼ .

The addend on the right reflects the breaking up of the array into sub-arrays and the final
concatenation. The MT looks at the critical value ￼ ￼ . Obviously,
￼ for ￼ , so that we are in Case 1 of the MT. Thus, ￼ .

By the way, the algorithm does not sort the array correctly. If the maximum is located in the first
sixth of the array, it never appears in the result.

T (n) = Θ(n)

Cn + C
n
8

+ C
n
82

+ … ≈ Cn ⋅
∞

∑
i=0

(
1
8

)i =
8
7

Cn

T (n) = 5T (n /3) + Cn

c = log3(5) ≈ 1.465
f (n) = O(nd) d > 1 T (n) = Θ(nc)

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:
	Problem 7:
	Problem 1:
	Problem 2:

