
String Searches
Thomas Schwarz, SJ

Problem
• We are given a long string (text)

• such as a book or a genome

• We are given a short string (pattern)

• We want to find where the shorter string is located in the
longer one

Naïve Algorithm
• We slide the pattern successively through the text

• We compare the letters in the pattern with the text

• If two letters differ, go to the next location

• If we reach the end, we have found a match

Naïve Algorithm
• Example

• No match on first character: move pattern by one

• After sliding, three letters coincide, but then we have a
mismatch: move pattern by one

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

Naïve Algorithm
• Example:

• No match on first, slide

• No match on first, slide

• ...

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

Naïve Algorithm
• What are the costs:

• At best, we compare each letter of the text with a letter
in the pattern

• : length of pattern

• : length of string

• Best time:

• Worst time:

n

m

n

nm

Naïve Algorithm
• Average time:

• Depends on how likely matches between letters are

• If we assume there are characters and all are equally
likely and the appearance of a character is independent
of its neighbors and ... :

• Probability of a character matching is

• Expected number of characters compared is

•

c

1/c

c − 1
c

⋅ 1 +
c − 1

c2
⋅ 2 + … +

c − 1
cm−1

⋅ (m − 1) +
1
cm

⋅ m

Naïve Algorithm
• Average time:

•

• Converges quickly to

c − 1
c

⋅ 1 +
c − 1

c2
⋅ 2 + … +

c − 1
cm−1

⋅ (m − 1) +
1
cm

⋅ m

c
c − 1

m=2

m=4
m=26
m=100

5 10 15 20

0.5

1.0

1.5

2.0

Naïve Algorithm
• Thus:

• Average number of comparisons is close to 1

Karp Rabin
• Idea:

• Use a hash function to compare a sub-string with the
pattern

• Hash function needs to be calculated from a sliding
window:

Karp Rabin
• Idea:

• The hash for a window needs to be calculated from:

• the previous hash

• the element leaving the sliding window

• the element entering the sliding window

Karp Rabin
• Example for Rabin Hashes:

• Assign values to each letter in the alphabet

• Finite-field elements

• Integers

• Use

v(l) l

ρ(ai, ai+1, ai+2, …, ai+n−1) =
n−1

∑
ν=0

αn−νv(ai+ν)

Karp Rabin
 ρ(ai, ai+1, ai+2, …, ai+n−1) =

n−1

∑
ν=0

αn−νv(ai+ν)

def rabin(word):
 suma = 0
 for i, letter in enumerate(word):
 suma += (g**(len(word)-i-1)*ord(letter)) % p
 return suma % p

def rabin2(word):
 return sum((g**(len(word)-i-1)*ord(word[i])) % p
 for i in range(len(word)))%p

Karp Rabin
• Then calculate the effect of a shift by one to the right

ρ(ai+1, ai+1, …, ai+n)

= αnai+1 + αn−1ai+2 + αn−2ai+3 + … + αai+n−1 + ai+n

= α (αnai + αn−1ai+1 + αn−2ai+2 + … + αai+n−2 + ai+n−1)
−αn+1ai + ai+n

= − αn+1ai + αρ(ai, ai+1, …ai+n−1) + an

Karp Rabin
• Thus:

• We can calculate the Rabinesque hash from the
previous hash, the entering element, and the leaving
element

• This is the shift

Karp Rabin
• The algorithm begins by calculating the of the pattern

and of the first len(pattern) letters in the text

• Using the shift, we compare the of a portion of the text
with the of the pattern. If they are the same, then we
have a possible occurrence.

• We still need to verify.

ρ

ρ
ρ

Karp Rabin
• Implementation:

• Pick a prime just below a power of 2 (and much
larger than the values of the letters in the alphabet)

• Find a good value for

• Best choice is a generator

• The powers of make up all the values between 1
and

p

α

g

g
p − 1

Karp Rabin
• Implementation:

• This is not the best way, but we need more Algebra

def test_generator(gen, prime):
 return len({ (gen**i)%prime for i in
 range(prime-1) }) == prime-1

Karp Rabin
• Complexity:

• len(pattern), len(text)

• Still looks at every possible position

• Replace comparisons with:

• One comparison, two additions, one multiplication with a
constant (can be done with a table lookup)

• Improvement from to to find possible
locations

• But if the hash is bad, most possible locations still need to
be verified

m = n =

n − m + 1

m

Θ(nm) Θ(n + m)

Boyer Moore Algorithm
• How can we do better?

• Need to be able to slide the pattern further

• But for this we need to foresee the text

• That is why it is better to compare the pattern and the
text from the right

Boyer Moore Algorithm
• Example:

• Compare pattern from the right

• The 'A' in the text can at best be matched by the
rightmost 'A' in the pattern

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

Boyer Moore Algorithm

• So we slide four to the right

• And then compare at the new location

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

Boyer Moore Algorithm

• The 'V' does not appear in the string at all

• So we can slide by the length of the pattern

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

M A L L S R T A A E E V I A S F T E E Q A V L A L T N V E K D K

A S F T ELA L

Boyer Moore Algorithm
• To implement the "bad character" at the end, we need to

process the string

• Shift is the smallest distance of the bad character to
the end in the pattern or the length of the pattern

A S F T ELA L A: 4
E: 0
F: 2
L: 5
S: 3
T: 1

Boyer Moore Algorithm
• We can use this also if we find a bad character after

successful comparisons

• We can shift by 5-3

• In general: table[char]-j

j

A S F T ELA L

A S A T ELA L

A S F T ELA L

M A L L S R T A A E E Q A V L A L T N V E K D K A S F T ELA L Q A L S A L

A: 4
E: 0
F: 2
L: 5
S: 3
T: 1

Boyer Moore Algorithm
• This is not the only knowledge that we can use

• Assume we have already matched part of the pattern,
but now have a disagreement

• This means that we know a part of the text

• Where can 'ATE' be matched in the pattern?

• Answer: not at all

A S A T ELA L

A S F T ELA L

M A L L S R T A A E E Q A V L A L T N V E K D K A S F T ELA L Q A L S A L

Boyer Moore Algorithm
• We preprocess the pattern

• For each letter we find the minimum distance to the
end

• For each suffix, we find the minimum distance of
another copy of the suffix to the end

• Or: If the alphabet is small:

• Where can the suffix preceded by a single letter be
found

Boyer Moore Algorithm
• Example:

• pattern: 011001001

• match "1": where can "11" be found: distance 6

• match "01" where can "101" be found:

• 011001001: shift 7

• match "001": where is "0001":

• 011001001: shift 7

• match "01001": where is "101001" :

• 011001001: shift 7

Boyer Moore Algorithm
• Both rules give usually different safe shift amounts

• Always use the larger one

Boyer Moore Algorithm
• Example

• Bad letter: shift 1

• Good suffix "": shift 1

0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 11 0 01 0 1 10 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1

Boyer Moore Algorithm
• Example:

• Bad character: shift 1

0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 11 0 01 0 1 10 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1

Boyer Moore Algorithm
• Example

• Compare:

• Bad character rule: shift by one

• Good suffix rule: shift by 14

0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 11 0 01 0 1 10 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1

0 1 0 0 0 0 0 1 1 0 0 01 0 01 0 1 10 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1

0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

Boyer Moore Algorithm
• Example

• After shift, we find a match

• Then we shift by one

0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 11 0 01 0 1 10 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0

0 0 0 0 1 1 1 1

Boyer Moore Algorithm
• Your turn:

• Preprocess "AGGTAA"

• Bad character table

• Bad suffix table

A: 0
C: 6
G: 3
T: 2

CA: 5
GA: 5
TA: 1
AAA: 5
CAA: 5
GAA: 5
ATAA: 5
CTAA: 5
TTAA: 5

CA*****
 AGGTAA

Boyer Moore
• Analysis is very difficult

• Worst case:

• Pattern and text consists of a single letter

• comparisons

• Best case:

• Pattern and text have completely different letters

• comparisons

∼ n

⌊
n
m

⌋

Boyer Moore
• Analysis is very difficult

• Speed-up usually substantial

• Called a "sub-linear" algorithm

Variants:
• Only the bad character rule:

• Boyer-Moore-Horspool:

• Only bad character rule

• Apostolico-Giancarlo

• Uses the pattern preprocessing in order to not
compare letters that are known to be good

• Instead of a single bad character:

• Use pairs of characters

Evaluation
• Algorithm comparison depends on the model

• Experimental evaluation:

• Define and find "typical scenarios"

• Use statistics to compare results

