
Back-Tracking
Thomas Schwarz, SJ



Complete Enumeration
• You are given:


• A set of numbers, e.g. 


• A target number 


• Your task is to find a subset of  such that the sum of the 
numbers in the subset is as close to  as possible.

𝕊 = {1,5,12,14,19,20,21}

t

𝕊
t



Complete Enumeration
• Complete enumeration solves this by 


• creating all subsets


• selecting the one that works best


• One possibility is to use recursion for complete 
enumeration



Complete Enumeration
• Base case:


• Subsets of the empty set are just the empty set


• Subsets of a set with one element  are just x ∅, {x ]

subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …



Complete Enumeration
• Recursive Case:


• Subsets of the set  are:


• Subsets of 


• Subsets consisting of a subset of  and 

{a1, …, an}

{a1, …, an−1}

{a1, …, an−1} an
subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …



Complete Enumeration
• How to represent sets?


• Python has a type sets, but the elements need to be 
hashable


• And sets are not hashable


• Could use frozen_sets, but these are ugly


• So, create the set of subsets as a list



Complete Enumeration
• Implementation:

def subsets(a_list): 
    if len(a_list) == 0: 
        return [] 
    if len(a_list) == 1: 
        return [[], [a_list[-1]]] 
    lst = a_list[-1] 
    menge = subsets(a_list[:-1]) 
    return menge + [ x+[lst] for x in menge] 



Complete Enumeration
• Example:   target 37:


•

𝕊 = {1,5,12,14,19,20,21}

lista = [1, 5, 12, 14, 19, 20, 21] 

for subset in subsets(lista): 
    if sum(subset) == 37: 
        print(subset)

[1, 5, 12, 19] 
[5, 12, 20]



Complete Enumeration
• If you want to find the best approximation, you need to 

remember the best value so far

def find(lista, target): 
    best = sum(lista)+1 
    best_seen = [] 
    for subset in subsets(lista): 
        if abs(sum(subset) - target) < best: 
            best = abs(sum(subset) - target) 
            best_seen = subset 
    return best, best_seen



Complete Enumeration
• Example:  Target is 43


• Best:  1, [5, 19, 20]



Complete Enumeration
• Complete enumeration of subsets generates  subsets


• Therefore, is exponential


• In general: complete enumeration with recursion creates a 
call tree with  or  leaves

2n

bn bn+1



Back Tracking
• Idea:


• We do not always need to go down to the leaves of the 
tree, but can stop earlier



Back Tracking
• Example:


• The n-queens problem


• Place n-queens on a  
chessboard so that no queen 
threatens any other


• Queens can move vertically, 
horizontally, and diagonally

n × n



Back Tracking
• Strategy:


• We notice that there can be only one queen per column


• And that there has to be one in every column to get the 
total number to n



Back Tracking
• Add queen to a partial solution


• Check whether queen placement is possible


• If not, stop this branch in the tree


• Trick is to use recursion so that we do not have to 
administer walking up and down the tree



Back Tracking
• We encode the problem by having a list board 

•  queen is located in column  and row board[i]


• E.g. board = [1,3,0,7,4]

i th i

row 7
col 3



Back Tracking
• E.g. board=[1,3,0,7,4] 

• We then assign the next queen in column 5


• We try out: 0, 1, 2, … , 7


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4] 

• We then assign the next queen in row 5


• We try out: 0, 1, 2, … , 7


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4] 

• We then assign the next queen in row 5


• We try out: 0, 1, 2, … , 7


• 2 does work


• board=[1,3,0,7,4, 2]



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 0


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 1


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 2


• 2 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 3


• 3 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 4


• 4 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2] 

• We then assign the next queen in column 6


• We try out: 5


• 5 does work


• board=[1,3,0,7,4,2,5]



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We then assign the next queen in column 7


• We try out: 0


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We then assign the next queen in column 7


• We try out: 1


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We then assign the next queen in column 7


• We try out: 2, 3, ..., 7


• none works



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We now remove 5


• board=[1,3,0,7,4,2]



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We now remove 5


• board=[1,3,0,7,4,2] 

• And go to the next one


• board=[1,3,0,7,4,2,6] 

• which does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5] 

• We now remove 5


• board=[1,3,0,7,4,2] 

• And go to the next one


• board=[1,3,0,7,4,2,6] 

• which does not work


• so we try the next one


• board=[1,3,0,7,4,2,7] 

• which does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,2,?] 

• All possibilities are 
exhausted


• We return and try the next 
position for column 5



Back Tracking
• E.g. 
board=[1,3,0,7,4,3] 

• 3 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,4] 

• 4 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,5] 

• 5 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,6] 

• 6 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,7] 

• 7 does not work



Back Tracking
• E.g. board=[1,3,0,7,4] 

• Since we exhausted all 
possibilities, we know this 
position is hopeless


• So we move on to the next 
possibility


• board=[1,3,0,7,5] 

• Which does not work



Back Tracking
• E.g. board=[1,3,0,7,6] 

• Not valid



Back Tracking
• E.g. board=[1,3,0,7] 

• Not valid


• So, we remove and return



Back Tracking
• E.g. board=[1,3,0] 

• Now more possibilities in 
column 3


• We return and board is 
now [1,3] and we try the 
next possibility [1,3,1] 

• This is invalid



Back Tracking
• E.g. board=[1,3] 

• First valid partial board is 


• board=[1,3,5]



Back Tracking
• E.g. board=[1,3,5] 

• First choice is 0



Back Tracking
• E.g. board=[1,3,5,0] 

• First choice is 2



Back Tracking
• E.g. board=[1,3,5,0,2] 

• Select 4



Back Tracking
• board=[1,3,5,0,2,4]



Back Tracking
• [1,3,5,0,2,4,6] 

• Backtrack!



Back Tracking
• [1,3,5,0,2,4] 

• Does not work


• Running out of optionsx



Back Tracking
• [1,3,5,0,2] 

• Does not work


• Running out of options


• BACKTRACK!



Back Tracking
• [1,3,5,0,4] 

• Try out 4



Back Tracking
• [1,3,5,0,4] 

• No next placement


• Backtrack!



Back Tracking
• E.g. board=[1,3,5,0] 

• Backtrack



Back Tracking
• board=[1,3,5] 

• Select 2



Back Tracking
• E.g. board=[1,3,5,2]



Back Tracking
• E.g. board=[1,3,5,2,4] 

• Backtrack



Back Tracking
• E.g. board=[1,3,5,2] 

• No more placement



Back Tracking
• E.g. board=[1,3,5] 

•



Back Tracking
• E.g. board=[1,3,5,7] 

•



Back Tracking
• board=[1,3,5,7,2]



Back Tracking
• board=[1,3,5,7,2,0] 

•



Back Tracking
• board=[1,3,5,7,2,0] 

•



Back Tracking
• [1,3,5,7,2,0,6,4] 

• Finish



Back Tracking
• Need to check validity:


• Set-up guarantees that queens are in different columns


• Need to check that a new queen is not in the same row 
or in one of the two diagonals with any already placed 
queen 

def is_valid(board): 
    current_queen_row, current_queen_col = len(board)-1, board[-1] 
    for row, col in enumerate(board[:-1]): 
        diff = abs(current_queen_col - col) 
        if diff == 0 or diff == current_queen_row - row: 
            return False 
    return True



Back Tracking
def queens(n, board = []): 
    if n == len(board): 
        return board 
    for col in range(n): 
        board.append(col) 
        if is_valid(board): 
            board = queens(n, board) 
            if is_valid(board) and len(board)==n: 
                return (board) 
        board.pop() 
    return board



Back Tracking
• Notice how we add and a remove a value from the board

def queens(n, board = []): 
    if n == len(board): 
        return board 
    for col in range(n): 
        board.append(col) 
        if is_valid(board): 
            board = queens(n, board) 
            if is_valid(board) and len(board)==n: 
                return (board) 
        board.pop() 
    return board



Back Tracking
• Back-tracking can be used if


• We can construct partial solutions


• We can verify that a partial solution is invalid


• Can we verify if the solution is complete



Back Tracking
• Back-tracking can be used if


• We can construct partial solutions


• We can verify that a partial solution is invalid


• Can we verify if the solution is complete



Back Tracking
•  queens problem:


• Can we construct partial solutions?


• Yes, just use partial boards


• Can we verify that a partial solution is invalid


• Yes, if a queen is in the same row or in the same 
diagonal with one placed before


• Can we verify if the solution is complete


• Yes, when we have reached a board of length n. 

n



Back Tracking
• Example: Sudoku Solver


• Given an initial sudoku position


• Add one new number at a time


• Check whether that number violates any of the rules


• Finish when all numbers have been placed



In Class Exercise
• Given a number of pairs of numbers, i.e. a directed graph 

and a starting location


• Find a path that starts at the specified location and uses 
up all edges

Start

0 1 2

3 4 5

6 7 8



In Class Exercise
• A solution


• which happens to be 
a cycle

Start

0 1 2

3 4 5

6 7 8

1

2

3

4

5

6

7

8

9

10

11 12

13

14



In Class Exercise
• Can we construct a partial solution?



In Class Exercise
• Can we construct a partial solution?


• Yes:


• We start with the start location


• We then add other locations at the end



In Class Exercise
• Can we verify if a partial solution is invalid?



In Class Exercise
• Can we verify if a partial solution is invalid?


• Yes:


• If there is no unused edge starting with the last node, 
but there are unused edges, then the solution is 
invalid



In Class Exercise
• Can we verify if the solution is complete?



In Class Exercise
• Can we verify if the solution is complete?


• Yes. 


• The solution is complete if there are no more edges 
left



In Class Exercise
• Setting up 


• Define a data structure for edges


• Define a data structure for the itinerary



In Class Exercise
edges = [ (0,1), (1,0), (1,3), (1,4), (2,1), 
          (3,4), (3,6), (4,5), (4,8), (5,1), 
          (5,2), (6,7), (7,3), (8,5) ] 

current_itinerary = [0]



In Class Exercise
• Stop condition:


• if not edges: 
        return current_itinerary



In Class Exercise
• Schema

current = [] 
def get_itinerary(edges, current): 
    if not edges: 
        return current_itinerary 
    ## use an edge to add to the itinerary 

## use recursion 
       ## else backtrack! 
         

    return None



In Class Exercise
• Expand

def get_itinerary(edges, current): 
    print('edges, itinerary', edges, current, current[-1]) 
    if not edges: 
        return current 
    for edge in edges: 
        if edge[0] == current[-1]: 
            current.append(edge[1]) 
            current_edges = [e for e in edges if not e == edge] 
            result = get_itinerary(current_edges, current) 
            if result: 
                return result 
            current.pop() 
    return None 



In Class Exercise 2
• Gray Codes:


• List all numbers from 0 to  so that consecutive 
numbers differ only in one bit in the binary 
representation


• Examples:


• [0, 1, 5, 13, 12, 8, 9, 11, 10, 2, 3, 7, 15, 14, 6, 4]


• [0, 1, 5, 4, 12, 8, 9, 13, 15, 7, 6, 2, 3, 11, 10, 14]

2n − 1



In Class Exercise 2
• Calculate the Hamming weight of a number


• Number of one-bits 


• Use binary operations

def hamming(a): 
    count = 0 
    while(a): 
        if a&1 == 1: 
            count += 1 
        a = a>>1 
    return count



In Class Exercise 2
000000 0 
000001 1 
000010 1 
000011 2 
000100 1 
000101 2 
000110 2 
000111 3 
001000 1 
001001 2 
001010 2 
001011 3 
001100 2 
001101 3 
001110 3 
001111 4 

010000 1 
010001 2 
010010 2 
010011 3 
010100 2 
010101 3 
010110 3 
010111 4 
011000 2 
011001 3 
011010 3 
011011 4 
011100 3 
011101 4 
011110 4 
011111 5

for i in range(15): 
    print('{:05b}'.format(i),  
          hamming(i))



In Class Exercise 2
• Use backtracking


• Can we use partial solutions?


• Can we verify if a partial solution is invalid?


• Can we verify if the solution is complete?



In Class Exercise 2
• Use backtracking


• Can we use partial solutions?


• A partial list of numbers


• Can we verify if a partial solution is invalid?


• Cannot find another number to add to it


• Can we verify if the solution is complete?


• All numbers are used up



In Class Exercise 2
numbers = [2, 3, 4, 5, 6, 7 ] 
current = [0,1] 

def gray_code(current, numbers): 
    if not numbers: 
        return current 
    for num in numbers: 

If we can add num, do it 
recursive call, return if successful 
undo num 

    return None 



In Class Exercise 2
def gray_code(current, numbers): 
    if not numbers: 
        return current 
    for num in numbers: 
        if hamming(current[-1]^num) == 1: 
            current_numbers = [n for n in numbers if n != num] 
            current.append(num) 
            result = gray_code(current, current_numbers) 
            if result: 
                return result 
            current.pop() 
    return None



In Class Exercise 2

numbers = list(range(2,16)) 
random.shuffle(numbers) 
print(gray_code([0,1], numbers))


