Back-Tracking

Thomas Schwarz, SJ

Complete Enumeration

* You are given:
e Asetof numbers,e.g. S =1{1,5,12,14,19,20,21}
e A target number ¢

e Your task is to find a subset of S such that the sum of the
numbers in the subset is as close to 7 as possible.

Complete Enumeration

e Complete enumeration solves this by
e creating all subsets
* selecting the one that works best

* One possibility is to use recursion for complete
enumeration

Complete Enumeration

e Base case:

e Subsets of the empty set are just the empty set

e Subsets of a set with one element x are just @, {x]

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Complete Enumeration

e Recursive Case:

e Subsets of the set {ay, ..., a,} are:
e Subsets of {ay,...,a, {}

e Subsets consisting of a subset of {4y, ...,a,_{} and a,

subsets a ,8,,8,,a D subsets a ,8y,8,,85,. 8, E

/\ o~

@s(a a,,a, a, a @ a, a,,a,a,.a, +{a 1} @S(ao,al,az,ay,,,a +{a} subsets (8g:81,85,85- 85, D

ZANNVANNEEVA VAN

Complete Enumeration

e How to represent sets?

* Python has a type sets, but the elements need to be
hashable

 And sets are not hashable
 Could use frozen_sets, but these are ugly

e S0, create the set of subsets as a list

Complete Enumeration

* |mplementation:

def subsets(a list):
1f len(a list) ==

return |[]
1f len(a list) == 1:

return [[], [a list[-1]]]
lst = a list[-1]
menge = subsets(a list[:-1])

return menge + [x+[lst] for x 1n menge]

Complete Enumeration

e Example: S = {1,5,12,14,19,20,21} target 37:
lista = [1, b5, 12, 14, 19, 20, 21]
for subset 1n subsets(lista):

1f sum(subset) == 37:
print (subset)

° (1, 5, 12, 19]
(5, 12, 20]

Complete Enumeration

* |f you want to find the best approximation, you need to
remember the best value so far

def find(lista, target):
best = sum(lista) +1
best seen = []
for subset 1n subsets(lista):

1f abs(sum(subset) - target) < best:
best = abs(sum(subset) - target)
best seen = subset

return best, best seen

Complete Enumeration

e Example: Target is 43
e Best: 1,[5, 19, 20]

Complete Enumeration

e Complete enumeration of subsets generates 2" subsets

 Therefore, is exponential

* |n general: complete enumeration with recursion creates a
call tree with b" or b+ leaves

Back Tracking

e |dea:

 We do not always need to go down to the leaves of the
tree, but can stop earlier

Back Tracking

e Example:

* The n-queens problem

e Place n-queensonan Xn
chessboard so that no queen
threatens any other

e Queens can move vertically,
horizontally, and diagonally

Back Tracking

e Strategy:
* We notice that there can be only one queen per column

* And that there has to be one in every column to get the
total number to n

Back Tracking

 Add queen to a partial solution
e Check whether queen placement is possible
e |f not, stop this branch in the tree

e Trick Is to use recursion so that we do not have to
administer walking up and down the tree

Back Tracking

e We encode the problem by having a list board
l-th

queen is located in column 7 and row board[i]

e £E.9. board = [1,3,0,7,4]
col 3

row /

Back Tracking

e £E.9. board=[1,3,0,7,4]
 We then assign the next queen in column 5

e Wetryout:0,1,2,...,7

e 0 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4]
 We then assign the next queen in row 5
e Wetryout:0,1,2,...,7

e 1 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4]
 We then assign the next queen in row 5
e Wetryout:0,1,2,...,7

e 2 does work

e board=I[1,3,0,7,4, 2]

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e Wetry out: O

e O does not work

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e We try out: 1

e 1 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e We try out: 2

e 2 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e We try out: 3

e 3 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e Wetryout: 4

e 4 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4,2]
* We then assign the next queen in column 6
e We try out: 5

e 5 does work

e board=[1,3,0,7,4,2,5]

Back Tracking

e E.9. board=(1,3,0,7,4,2,5]
* We then assign the next queen in column 7
e Wetry out: O

e O does not work

Back Tracking

e E.9. board=(1,3,0,7,4,2,5]
* We then assign the next queen in column 7
e We try out: 1

e 1 does not work

Back Tracking

e E.9. board=(1,3,0,7,4,2,5]
* We then assign the next queen in column 7
e Wetryout: 2,3, ..., 7

e none works

Back Tracking

e E.9. board=(1,3,0,7,4,2,5]
e \WWe now remove 5

e board=[1,3,0,7,4,2]

Back Tracking

e E.9. board=(1,3,0,7,4,2,5]
e We now remove 5
e pboard=[1,3,0,7,4,2]
* And go to the next one
e board=[1,3,0,7,4,2,0]

e which does not work

e £E.g. board=[1,3,0,7,4,2,5]

Back Tracking

e \We now remove 5

e board=[1,3,0,7,4,2]
 And go to the next one

e board=I[1,3,0,7,4,2,0]
* which does not work

* so we try the next one

e board=[1,3,0,7,4,2,7]

e which does not work

Back Tracking

e E.Q.
board=I[1,3,0,7,4,2, 7]

o All possibilities are
exhausted

e We return and try the next . .
position for column 5

e E.Q.

Back Tracking

board=I[1,3,0,7,4, 3]

e 3 does not work

e E.Q.

Back Tracking

board=[1,3,0,7,4,4]

e 4 does not work

e E.Q.

Back Tracking

board=[1,3,0,7,4,5]

e 5 does not work

e E.Q.

Back Tracking

board=[1,3,0,7,4, 6]

e 6 does not work

e E.Q.

Back Tracking

board=[1,3,0,7,4,7]

e 7 does not work

Back Tracking

e £E.9. board=[1,3,0,7,4]

e Since we exhausted all
possibilities, we know this
position is hopeless

e SO0 we move on to the next
possibility

e board=I[1,3,0,7,5]

e \Which does not work

e £E.9. board=[1,3,0,7,6]

Back Tracking

e Not valid

Back Tracking

e £E.9. board=[1,3,0,7]
e Not valid

e S0, we remove and return

Back Tracking

e £E.9. board=[1,3,0]

e Now more possibilities In
column 3

e We return and board is
now [1, 3] and we try the

next possibility [1, 3, 1]

e Thisis invalid

Back Tracking

e £E.g. board=[1, 3]
* First valid partial board is

e board=[1,3,5]

¢ E.g.board=[1,3,5]

Back Tracking

e First choiceis O

e E.g. board=[1,3,5,0]

Back Tracking

e First choiceis 2

¢ E.g. board=[1,3,5,0,2]

Back Tracking

e Select 4

e board=[1,3,5,0,2,4]

Back Tracking

® [1137570127416]

e Backtrack!

Back Tracking

o [11315101214]
e Does not work

 Running out of options

Back Tracking

o [113151012]
e Does not work

 Running out of options

e BACKTRACK!

Back Tracking

Back Tracking

® [173751014]

e Tryout4

® [113151014]
* No next placement

e Backtrack!

Back Tracking

e E.g. board=[1,3,5,0]

Back Tracking

e Backtrack

e board=[1,3,5]

Back Tracking

e Select 2

Back Tracking

e E.g. board=1[1,3,5,2,4]

Back Tracking

e Backtrack

e E.g. board=[1,3,5,2]

Back Tracking

* No more placement

¢ E.g.board=[1,3,5]

Back Tracking

e« E.g.board=[1,3,5,7]

Back Tracking

e board=[1,3,5,7,2]

Back Tracking

e board=[1,3,5,7,2,0]

Back Tracking

e board=[1,3,5,7,2,0]

Back Tracking

® [113757772107614]

Back Tracking

e Finish

Back Tracking

* Need to check validity:
e Set-up guarantees that queens are in different columns

* Need to check that a new queen is not in the same row
or in one of the two diagonals with any already placed
queen

def 1s valid(board):

current queen row, current queen col = len(board)-1, board[-1]
for row, col 1in enumerate (board[:-1]):

diff = abs(current queen col - col)

1f diff == 0 or diff == current queen row - row:

return False
return True

Back Tracking

def queens (n, board = []):
1f n == len (board):
return board
for col 1n range(n) :
board.append (col)
1f 1s valid(board):
board = queens (n, board)
1f 1s valid(board) and len (board)==n:
return (board)
board.pop ()
return board

Back Tracking

e Notice how we add and a remove a value from the board

def queens (n, board = []):
1f n == len (board):
return board
for col 1n range(n) :
board.append(col)
1f 1s valid(board) :
board = queens(n, board)
1f 1s valid(board) and len (board)==n:
return (board)
board.pop ()
return board

Back Tracking

 Back-tracking can be used if
 We can construct partial solutions
* We can verify that a partial solution is invalid

e Can we verify if the solution is complete

Back Tracking

 Back-tracking can be used if
 We can construct partial solutions
* We can verify that a partial solution is invalid

e Can we verify if the solution is complete

Back Tracking

* 71 queens problem:
e Can we construct partial solutions?
* Yes, just use partial boards
 Can we verify that a partial solution is invalid

* Yes, if a queen is in the same row or in the same
diagonal with one placed before

 Can we verify if the solution is complete

* Yes, when we have reached a board of length n.

Back Tracking

e Example: Sudoku Solver
e Given an initial sudoku position
* Add one new number at a time
e Check whether that number violates any of the rules

 Finish when all numbers have been placed

In Class Exercise

 Given a number of pairs of numbers, i.e. a directed graph

and a starting location Start

 Find a path that starts at the specified location and uses
up all edges

In Class Exercise

e A solution

art
e which happens to be ~ 14

a cycle @1_’ «5—(2)

]

4

In Class Exercise

e Can we construct a partial solution?

In Class Exercise

e Can we construct a partial solution?
e Yes:
e We start with the start location

e \We then add other locations at the end

In Class Exercise

e Can we verify if a partial solution is invalid?

In Class Exercise

e Can we verify if a partial solution is invalid?
* Yes:

e |f there is no unused edge starting with the last node,
but there are unused edges, then the solution is
invalid

In Class Exercise

e Can we verify if the solution is complete?

In Class Exercise

e Can we verify if the solution is complete?

e Yes.

* The solution is complete if there are no more edges
left

In Class Exercise

e Setting up
 Define a data structure for edges

 Define a data structure for the itinerary

In Class Exercise

edgeS = [(0,1), (1,0), (1/3)1 (1,4),
(3,4), (3,0), (4,5), (4,8),
(5,2), (o,7), (7,3), (8,3)]

current itinerary = [0]

In Class Exercise

e Stop condition:

° if not edges:

return current 1tilinerary

In Class Exercise

e Schema

current = []
def get i1itinerary(edges, current):
1f not edges:
return current 1tilinerary

use an edge to add to the itinerary
use recursion
else backtrack!

return None

In Class Exercise

e Expand

def get 1tinerary(edges, current):
print ('edges, i1tinerary', edges, current, current[-1])
1f not edges:
return current
for edge 1n edges:

1f edge[0] == current[-1]:
current.append (edge[1l])
current edges = [e for e 1n edges 1f not e == edge]
result = get 1tinerary(current edges, current)

1f result:
return result
current.pop ()
return None

In Class Exercise 2

e Gray Codes:

e List all numbers from 0 to 2" — 1 so that consecutive
numbers differ only in one bit in the binary
representation

e Examples:
e [0,1,5,13,12,8,9,11,10,2,3,7, 15,14, 6, 4
* [0,1,5,4,12,8,9,13,15,7,6,2, 3,11, 10, 14

In Class Exercise 2

e Calculate the Hamming weight of a number
e Number of one-bits

e Use binary operations

def hamming(a) :

count = 0
while (a) :
1f a&l == 1:
count += 1
a = a>>1

return count

In Class Exercise 2

for 1 1n range(1l5):
print ('{:05b}"'.format (1),
hamming (1))

000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111

W W N WD WD BEP O

010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111

O D W W w N b wwbdDhDowbdh DR

In Class Exercise 2

e Use backtracking
e Can we use partial solutions?
e Can we verify if a partial solution is invalid?

e Can we verify if the solution is complete?

In Class Exercise 2

e Use backtracking
e Can we use partial solutions?
e A partial list of numbers
e Can we verify if a partial solution is invalid?
e Cannot find another number to add to it
e Can we verify if the solution is complete?

e All numbers are used up

In Class Exercise 2

numbers
current

Il
O N
b |
|_\
'_'(.A)
-
N
-
Ul
-
(@)
-
-]

def gray code(current, numbers):
1f not numbers:
return current
for num 1n numbers:

If we can add num, do it
recursive call, return if successful

undo num
return None

In Class Exercise 2

def gray code(current, numbers):
1f not numbers:
return current
for num i1n numbers:
1f hamming (current[-1]"num) == 1:
current numbers = [n for n in numbers 1f n != num]
current.append (num)
result = gray code (current, current numbers)
1f result:
return result
current.pop ()
return None

In Class Exercise 2

numbers = list (range(2,16))
random.shuffle (numbers)
print (gray code([0,1], numbers))

