
Computational Model
Algorithms

Modeling Algorithms
• Algorithms can be implemented, but are not equal to an

implementation

• Performance is always concrete

• We can only measure what is there

• A given implementation of an algorithm

• On a given platform

• Under given circumstances

Modeling Algorithms
• Goal of algorithm design is not to invent well performing

algorithms

• Such a thing does not exist

• But to develop algorithms that work well under a large
variety of circumstances

RAM Model
• Classic Model

• RAM Model

• A machine consists of a CPU and RAM

• CPU has a large number of registers

• Unit costs for:

• Moving data between RAM and CPU

• Calculating between registers

RAM Model
• RAM Model is not accurate

• Operations do not cost the same

• Moving data from RAM to Cache (cache miss) can
take 200 nsec

• Simple operations take 20 nsec

RAM Model
• Operations are not sequential:

• Intel 486DX: 0.336 instructions per clock cycle at 33
MHz = 11.1 Million Instructions per Second (MIPS)

• AMD Ryzen 7 1800X: 84.6 instructions per clock
cycle at 3.6 GHz = 304,510 MIPS

• Now: many instructions run in parallel and execution
overlaps

RAM Model
• Data and instructions are cached in several cache levels

• Caches belong exclusively to a chip

• Core has own L1 / L2 caches

• Up till now:

• Caches are coherent through invalidation

• If one thread changes a cache content, other
threads will not see the old content

• Cache lines are invalidated and a read results in a
cache miss

RAM Model
• Effectiveness of caches depends on the instructions and

data

• Modern algorithm design:

• Find cache aware / cache oblivious algorithms

• Cache aware: Algorithm optimized depending on
cache parameters

• Cache oblivious: Algorithm does not need cache
parameters in order to make efficient use of caches

RAM Model
• Threading

• Many tasks can be performed in parallel

• Processes can be broken into threads

• Algorithms need to be thread-safe

• Correct even when execution is split over several
threads

• Usual tool is locking

• But locking can be detrimental to performance

• Modern algorithms can be lock-free and threadsafe

RAM Model
• Branch prediction and speculative execution

• Because cache misses are long

• Processor will executes statements after a
conditional statement

• At the danger of these statements not being
usable

Branch Prediction

Block

if X go to A else go to B

 Block A

 Block B

Code Branch Prediction

Block

if X go to A else go to B

 Block B

Execute B if X is predicted to be false

Block

if X go to A else go to B

 Block A

 Block B

Speculative Execution

Create two streams executing A and B
in parallel, knowing that one stream’s
result are thrown out

RAM Model
• Too many if statements and branch prediction and

speculative execution become ineffective

• Good algorithms can be designed that minimize branches

RAM Model
• Large Data Sets

• RAM is limited and expensive

• This might change soon with Phase Change
Memories as RAM substitutes

• Some data does not fit into RAM

• Performance becomes dominated by moving data
from storage into RAM and back

• Modern algorithms can be designed to work well with
certain storage systems

RAM Model
• Distributed Computing

• Many tasks are to massive to work on a single machine

• Distribute computation over many nodes

• Performance can now be dominated by the costs of
moving data between machines and / or coordinating
between them

• Distributed Algorithms

RAM Model
• Parallel Computation

• GPU have millions of simple processing elements

• Modern CUDA algorithms will make use of
parallelization

• Successors to earlier parallel algorithms

RAM Model
• Despite it all:

• RAM model has allowed us to develop a set of efficient
algorithms

• To which we still add

• However: Software engineers and algorithm designers
need to be aware of architecture

RAM Model
• Calculating timings

• Can depend on data

• Example: Sorting algorithm can run much faster on
almost sorted data (or much worse)

• Can calculate maximum time (pessimistic)

• Can calculate expected time

• Needs to make assumption on probabilities

• Can calculate minimum time (optimistic)

• Usually a useless measure

RAM Model
• Probabilistic algorithms

• Algorithms can make decisions based on probabilities

• Useful in case there is an "adversary" who gets to
select data

• Example:

• Cryptography:

• Can always break cryptography by guessing keys

• But the probability of breaking cryptography with
reasonable high probability in a limited amount of
time should be very small

Algorithm Evaluation
• Program solve instances of a problem

• Good algorithms scale well as instances become large

• Clients are only interested how fast a given instance of a
given size is solved

• Algorithm designers are interested in designing algorithms
that work well independent of the size of the instance

Algorithm Evaluation
• Evaluate performance by giving maximum or expected

run time of a program on an instance size

• Gives a function

• Interested in asymptotic behavior

n

ϕ(n)

Algorithm Evaluation
• Example: Compare , , for n2 0.1n3 0.01 ⋅ 2n

n = 0,100,200,…,1000

 n n**2 0.1n**3 0.01 2**n
 0 0.000000e+00 0.000000e+00 1.000000e-02
100 1.000000e+04 1.000000e+05 1.267651e+28
200 4.000000e+04 8.000000e+05 1.606938e+58
300 9.000000e+04 2.700000e+06 2.037036e+88
400 1.600000e+05 6.400000e+06 2.582250e+118
500 2.500000e+05 1.250000e+07 3.273391e+148
600 3.600000e+05 2.160000e+07 4.149516e+178
700 4.900000e+05 3.430000e+07 5.260136e+208
800 6.400000e+05 5.120000e+07 6.668014e+238
900 8.100000e+05 7.290000e+07 8.452712e+268
1000 1.000000e+06 1.000000e+08 1.071509e+299

• To compare the growth use Landau's notation

• Informally

• Big O: means grows slower or
equally fast than

• Little O: means grows slower or than

• Theta: means and grow equally
fast

• Omega: means grows faster than

f(n) = O(g(n)) f
g

f(n) = o(g(n)) f
g

f(n) = Θ(g(n)) f g

f(n) = Ω(g(n)) f g

Asymptotic Growth

Landau Notation
• Exact definitions

• Little o:

 f(n) = o(g(n)) ⇔ lim
n→∞

f(n)
g(n)

= 0

Landau Notation
• Exact definitions

• Big O:

f(n) = O(g(n)) ⇔ ∃c > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≤ cg(n)

Landau Notation
• Exact definitions

• :
Θ
f(n) = O(g(n)) ⇔ ∃c0 > 0 ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : c0g(n) < f(n) ≤ c1g(n)

Landau Notation
• Exact definitions

• :
Ω
f(n) = Ω(g(n)) ⇔ ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≥ c1g(n)

Landau Notation
• In general, we only look at positive functions

• For analytic functions (complex differentiable), there are
easier ways to determine the relationship between
functions

Example
• Use the definition to show that

2n2 + 4n + 5 = O(n2) for n → ∞

Example
•

•

• Pick and and find that

•

• Therefore

• Notice that we did not care about the exact constants

2n2 + 4n + 5 ≤ 2n2 + 4n2 + 5n2 if n ≥ 1

2n2 + 4n + 5 ≤ 11n2 if n ≥ 1

c0 = 12 n0 = 1

∀n > n02n2 + 4n + 5 < 12 ⋅ n2

2n2 + 4n + 5 = O(n2) for n → ∞

Some Useful Theorems
• Assume from now on that all functions are positive

•

• We also assume that the functions are analytic

• Differentiable as complex functions (almost
everywhere)

• This includes all major functions used in engineering

• Implies that they are infinitely often differentiable
(almost everywhere)

f

∀n ∈ ℕ : f(n) > 0

Some Useful Theorems

• Assume

• (this means that we also assume that the limit exists)

• Then:

lim
n→∞

f(n)
g(n)

= a > 0

f(n) = Θ(g(n)) for n → ∞

Some Useful Theorems
• Proof:

•

•

• Definition of the limit

•

lim
n→∞

f(n)
g(n)

= a > 0

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : |
f(n)
g(n)

− a | < ϵ

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : a − ϵ <
f(n)
g(n)

< a + ϵ

Some Useful Theorems
• Now we select one particular , namely .

• For this selection, we have

•

• We also set

•

• Now we have

•

• Thus by definition:

ϵ > 0 ϵ = a /2

∃δ > 0∀n > 1/δ : a /2 <
f(n)
g(n)

< (3/2)a

n0 = ⌈1/δ⌉

∀n > n0 : a /2 <
f(n)
g(n)

< (3/2)a

∀n > n0 :
a
2

g(n) < f(n) <
3a
2

g(n)

f(n) = Θ(g(n))

Some Useful Theorems
• implies

Proof:

 implies

,

which implies

f(n) = o(g(n)) f(n) = O(g(n))

f(n) = o(g(n))

lim
n→∞

f(n)
g(n)

= 0

∀ϵ > 0 ∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< ϵ

Some Useful Theorems
We select , which implies

We select and obtain

which implies

, i.e.

ϵ = 1

∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< 1

n0 = ⌈
1
δ

⌉

∀n > n0 :
f(n)
g(n)

< 1

∀n > n0 : f(n) < g(n)

f(n) = O(g(n)

Some Useful Theorems

• implies

• Proof is homework

lim
n→∞

f(n)
g(n)

= ∞ f(n) = Ω(g(n)

Examples
• Relationship between and ?

• Evaluate the asymptotic behavior of .

• The limit is of type , so we use the theorem of L'Hôpital

• Take the derivatives of denominator and numerator

• Obtain .

• Because , we have and

log(n) n
log n

n
∞
∞

1
n

1
=

1
n

lim
n→∞

1
n

= 0 lim
n→∞

log n
n

= 0 log(n) = o(n)

Examples
• Relationship between and ?

•

• Therefore .

2n 3n

lim
n→∞

2n

3n
= lim

n→∞
(
2
3

)n = 0

2n = o(3n)

