
Computational Model
Algorithms



Modeling Algorithms
• Algorithms can be implemented, but are not equal to an 

implementation


• Performance is always concrete


• We can only measure what is there


• A given implementation of an algorithm


• On a given platform


• Under given circumstances



Modeling Algorithms
• Goal of algorithm design is not to invent well performing 

algorithms


• Such a thing does not exist


• But to develop algorithms that work well under a large 
variety of circumstances



RAM Model
• Classic Model


• RAM Model


• A machine consists of a CPU and RAM


• CPU has a large number of registers


• Unit costs for:


• Moving data between RAM and CPU


• Calculating between registers



RAM Model
• RAM Model is not accurate


• Operations do not cost the same


• Moving data from RAM to Cache (cache miss) can 
take 200 nsec


• Simple operations take 20 nsec



RAM Model
• Operations are not sequential: 


• Intel 486DX:  0.336 instructions per clock cycle at 33 
MHz = 11.1 Million Instructions per Second (MIPS)


• AMD Ryzen 7 1800X: 84.6 instructions per clock 
cycle at 3.6 GHz = 304,510 MIPS 


• Now: many instructions run in parallel and execution 
overlaps



RAM Model
• Data and instructions are cached in several cache levels


• Caches belong exclusively to a chip


• Core has own L1 / L2 caches


• Up till now:


• Caches are coherent through invalidation


• If one thread changes a cache content, other 
threads will not see the old content


• Cache lines are invalidated and a read results in a 
cache miss



RAM Model
• Effectiveness of caches depends on the instructions and 

data


• Modern algorithm design:


• Find cache aware / cache oblivious algorithms


• Cache aware: Algorithm optimized depending on 
cache parameters


• Cache oblivious: Algorithm does not need cache 
parameters in order to make efficient use of caches



RAM Model
• Threading


• Many tasks can be performed in parallel


• Processes can be broken into threads


• Algorithms need to be thread-safe


• Correct even when execution is split over several 
threads


• Usual tool is locking


• But locking can be detrimental to performance


• Modern algorithms can be lock-free and threadsafe



RAM Model
• Branch prediction and speculative execution


• Because cache misses are long


• Processor will executes statements after a 
conditional statement


• At the danger of these statements not being 
usable



Branch Prediction

Block

if X go to A else go to B

 Block A

 Block B

Code Branch Prediction

Block

if X go to A else go to B

 Block B

Execute B if X is predicted to be false

Block

if X go to A else go to B

 Block A

 Block B

Speculative Execution

Create two streams executing A and B 
in parallel, knowing that one stream’s 
result are thrown out



RAM Model
• Too many if statements and branch prediction and 

speculative execution become ineffective


• Good algorithms can be designed that minimize branches



RAM Model
• Large Data Sets


• RAM is limited and expensive


• This might change soon with Phase Change 
Memories as RAM substitutes


• Some data does not fit into RAM


• Performance becomes dominated by moving data 
from storage into RAM and back


• Modern algorithms can be designed to work well with 
certain storage systems



RAM Model
• Distributed Computing


• Many tasks are to massive to work on a single machine


• Distribute computation over many nodes


• Performance can now be dominated by the costs of 
moving data between machines and / or coordinating 
between them


• Distributed Algorithms



RAM Model
• Parallel Computation


• GPU have millions of simple processing elements


• Modern CUDA algorithms will make use of 
parallelization


• Successors to earlier parallel algorithms 



RAM Model
• Despite it all:


• RAM model has allowed us to develop a set of efficient 
algorithms 


• To which we still add


• However:  Software engineers and algorithm designers 
need to be aware of architecture



RAM Model
• Calculating timings


• Can depend on data


• Example: Sorting algorithm can run much faster on 
almost sorted data (or much worse)


• Can calculate maximum time (pessimistic)


• Can calculate expected time


• Needs to make assumption on probabilities


• Can calculate minimum time (optimistic)


• Usually a useless measure



RAM Model
• Probabilistic algorithms


• Algorithms can make decisions based on probabilities


• Useful in case there is an "adversary" who gets to 
select data


• Example:


• Cryptography:


• Can always break cryptography by guessing keys


• But the probability of breaking cryptography with 
reasonable high probability in a limited amount of 
time should be very small



Algorithm Evaluation
• Program solve instances of a problem


• Good algorithms scale well as instances become large


• Clients are only interested how fast a given instance of a 
given size is solved


• Algorithm designers are interested in designing algorithms 
that work well independent of the size of the instance



Algorithm Evaluation
• Evaluate performance by giving maximum or expected 

run time of a program on an instance size 


• Gives a function  


• Interested in asymptotic behavior

n

ϕ(n)



Algorithm Evaluation
• Example:  Compare  ,  ,    for n2 0.1n3 0.01 ⋅ 2n

n = 0,100,200,…,1000

  n      n**2        0.1n**3     0.01 2**n 
  0  0.000000e+00 0.000000e+00 1.000000e-02 
100  1.000000e+04 1.000000e+05 1.267651e+28 
200  4.000000e+04 8.000000e+05 1.606938e+58 
300  9.000000e+04 2.700000e+06 2.037036e+88 
400  1.600000e+05 6.400000e+06 2.582250e+118 
500  2.500000e+05 1.250000e+07 3.273391e+148 
600  3.600000e+05 2.160000e+07 4.149516e+178 
700  4.900000e+05 3.430000e+07 5.260136e+208 
800  6.400000e+05 5.120000e+07 6.668014e+238 
900  8.100000e+05 7.290000e+07 8.452712e+268 
1000 1.000000e+06 1.000000e+08 1.071509e+299



• To compare the growth use Landau's notation


• Informally


• Big O:    means  grows slower or 
equally fast than  


• Little O:    means  grows slower or than 
 


• Theta:  means  and  grow equally 
fast


• Omega:   means  grows faster than 

f(n) = O(g(n)) f
g

f(n) = o(g(n)) f
g

f(n) = Θ(g(n)) f g

f(n) = Ω(g(n)) f g

Asymptotic Growth



Landau Notation
• Exact definitions


• Little o:


 f(n) = o(g(n)) ⇔ lim
n→∞

f(n)
g(n)

= 0



Landau Notation
• Exact definitions


• Big O:


f(n) = O(g(n)) ⇔ ∃c > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≤ cg(n)



Landau Notation
• Exact definitions


• :
Θ
f(n) = O(g(n)) ⇔ ∃c0 > 0 ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : c0g(n) < f(n) ≤ c1g(n)



Landau Notation
• Exact definitions


• :
Ω
f(n) = Ω(g(n)) ⇔ ∃c1 > 0 ∃n0 > 0 ∀n ∈ ℕ, n > n0 : | f(n) | ≥ c1g(n)



Landau Notation
• In general, we only look at positive functions


• For analytic functions (complex differentiable), there are 
easier ways to determine the relationship between 
functions



Example
• Use the definition to show that 

2n2 + 4n + 5 = O(n2) for n → ∞



Example
• 


• 


• Pick   and  and find that


• 


• Therefore 


• Notice that we did not care about the exact constants

2n2 + 4n + 5 ≤ 2n2 + 4n2 + 5n2 if  n ≥ 1

2n2 + 4n + 5 ≤ 11n2 if  n ≥ 1

c0 = 12 n0 = 1

∀n > n02n2 + 4n + 5 < 12 ⋅ n2

2n2 + 4n + 5 = O(n2) for n → ∞



Some Useful Theorems
• Assume from now on that all functions  are positive


• 


• We also assume that the functions are analytic


• Differentiable as complex functions (almost 
everywhere)


• This includes all major functions used in engineering


• Implies that they are infinitely often differentiable 
(almost everywhere)

f

∀n ∈ ℕ : f(n) > 0



Some Useful Theorems

• Assume  


• (this means that we also assume that the limit exists)


• Then:  

lim
n→∞

f(n)
g(n)

= a > 0

f(n) = Θ(g(n)) for n → ∞



Some Useful Theorems
• Proof:


• 


• 


• Definition of the limit


•

lim
n→∞

f(n)
g(n)

= a > 0

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : |
f(n)
g(n)

− a | < ϵ

⇒ ∀ϵ > 0 ∃δ > 0∀n > 1/δ : a − ϵ <
f(n)
g(n)

< a + ϵ



Some Useful Theorems
• Now we select one particular , namely . 


• For this selection, we have


• 


• We also set 


• 


• Now we have


• 


• Thus by definition:   

ϵ > 0 ϵ = a /2

∃δ > 0∀n > 1/δ : a /2 <
f(n)
g(n)

< (3/2)a

n0 = ⌈1/δ⌉

∀n > n0 : a /2 <
f(n)
g(n)

< (3/2)a

∀n > n0 :
a
2

g(n) < f(n) <
3a
2

g(n)

f(n) = Θ(g(n))



Some Useful Theorems
•   implies  


Proof:


  implies


,


which implies 

f(n) = o(g(n)) f(n) = O(g(n))

f(n) = o(g(n))

lim
n→∞

f(n)
g(n)

= 0

∀ϵ > 0 ∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< ϵ



Some Useful Theorems
We select , which implies 





We select  and obtain


 


which implies 


, i.e. 


ϵ = 1

∃δ > 0 ∀n >
1
δ

:
f(n)
g(n)

< 1

n0 = ⌈
1
δ

⌉

∀n > n0 :
f(n)
g(n)

< 1

∀n > n0 : f(n) < g(n)

f(n) = O(g(n)



Some Useful Theorems

•   implies 


• Proof is homework

lim
n→∞

f(n)
g(n)

= ∞ f(n) = Ω(g(n)



Examples
• Relationship between   and ?


• Evaluate the asymptotic behavior of  . 


• The limit is of type , so we use the theorem of L'Hôpital


• Take the derivatives of denominator and numerator


• Obtain .


• Because , we have  and 

log(n) n
log n

n
∞
∞

1
n

1
=

1
n

lim
n→∞

1
n

= 0 lim
n→∞

log n
n

= 0 log(n) = o(n)



Examples
• Relationship between  and ?


• 


• Therefore  .

2n 3n

lim
n→∞

2n

3n
= lim

n→∞
(
2
3

)n = 0

2n = o(3n)


