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Topological Sort

* Recall topological sort
 We are given a directed graph

e Want to order all vertices such that no edge goes from
a higher-numbered vertex to a lower-numbered vertex

e |f this is impossible, then we have a cycle

* S0, our algorithm also detects whether there is a cycle
in a directed graph

 \We use DFS for an even better algorithm



Topological Sort

e Run DFS on all nodes

 Order nodes according to finish time in descending
order



Topological Sort

e Startin A

e Order
adjacency
lists
alphabetically
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Topological Sort

* Visit B

aw
@) oy O
M- & 0 H O -

MO AEdRKBMUODTDH



Topological Sort

e Visit H
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: 1
G: C visit (H)
H: visit (B)
I: D

visit (A)



Topological Sort

e VisitE

A: B,C

B: H

C: E,F,H

D: A,G

E: F

F: I

G: C visit (E)

H- visit (H)

I: D visit (B)
visit (A)



Topological Sort

e Visit F

A: B,C

B: H

C: E,F,H

D: A,G

E: F

Fool visit (F)

G: C visit (E)

H: visit (H)

I: D visit (B)
visit (A)



Topological Sort

e Visit |

A: B,C

B: H

C: E,F,H

D: A,G

E: F

F: T visit (I)

G: C visit (F)

H: visit (E)

I: D visit (H)
visit (B)
visit (A)



Topological Sort

e Visit D
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Topological Sort

e At this point:

e The adjacency list of D starts with A (A1
e Alis gray

@ s
* This edge becomes a back edgel ‘\’/ .
D2

* And shows that there is a cycle
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Topological Sort

e A different example

e Startin A
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Topological Sort

e A different example

e Startin A
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Topological Sort

* Visit B
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Topological Sort

e Visit H
A: B,D,G
B: H
C: F
D: B,H
B G DG visit (H)
£ visit (B)
G: B visit (A)
H: F



Topological Sort

e Visit F 2 ‘a)

A: B,D,G

B: H’ ’ B 2 H 3
C: F

D: B,H

E: C,D,G visit (F)

F: visit (H)

G: B visit (B)

H: F visit (A)



Topological Sort

e Finish F
e Push F at front: [F]
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D, G VlSlt(F)
visit (H)
visit (B)
visit (A)



Topological Sort

* Finish H
e Push H at front: [H, F]
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G visit (H)
visit (B)
visit (A)



Topological Sort

e Finish B
e Push B at front: [B,H, F]
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Topological Sort

e (Go back to visit A
e [B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T



Topological Sort

e Visit D
e [B,H, F]
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Topological Sort

e Visit C
e [B,H, F]
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G visit (C)
visit (D)
visit (A)



Topological Sort

 Finish C
e [C, B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T

G visit (C)
visit (D)
visit (A)



Topological Sort

e Go back and finish D
e [D,C,B,H,F]
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Topological Sort

e \We are back to visit A
e Next nodeis G

e [D,C,B,H, F
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Topological Sort

e Visit G
e D, C, B, H,F]
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Topological Sort

e Finish G
* [G,D, G, B, H, F]
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Topological Sort

e Gobackto A
e [G,D,C,B,H,F]
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Topological Sort

e Finish A
° [Ay G! D! 05 B! H5 F]
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Topological Sort

e Done with visit(A)
° [Ay G! D! 05 B! H5 F]
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Topological Sort

e One white node left: E
e Visit E
e [A,G,D,C, B, H,F]
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Topological Sort

e Finish E
e [E,AG,D,C, B, H, F]
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Topological Sort

o Key observation from the examples:

* We have a cycle if we ever try to visit a gray node



Topological Sort

e Lemma: A directed graph G = (V, E) is acyclic if and
only if a DFS of G yields no back edges



Topological Sort

e Proof: "="

e |f DFS produces a back-edge (v, 1) then u is an
ancestor of v

e There is a path from u to v in the/tree

e The edge (v, 1) closes a cycle

e from u to v back to u Q\
p———

«

visiting v and discovering a gray node



Topological Sort

e Proof: "&!
e Suppose G has a cycle

e | et u be the first vertex in the cycle to be discovered




Topological Sort

* All other vertices in the cycle are white and there is a
white-path to the node v just in front of u

é cycle Q
0




Topological Sort

By the white-path theorem:

o \We will discover v from u

* (Though not necessarily through the cycle since
there might be more cycles)

e Thus, (v, 1) is a back edge



Topological Sort

e Theorem: DFS gives a topological sort or discovers a
cycle

e Proof:

e Need to show:

e |f DFS does not discover a cycle, then for each edge
(u,v), wehaveu.f >v.f



Topological Sort

* Proof:
e At the time that we are first looking at (u, v):

e y cannot be gray, because then we would have a
back-edge



Topological Sort

e At the time that we are first looking at (u, v):

e [fVvis white:

e Then by the white path theorem, u becomes an
ancestor of v

e By the parenthesis theoremv.f< u.f



Topological Sort

e Proof:

e At the time that we are first looking at (u, v):
e |f vis black, then u is still be visited, so
e 1 is not yet black

e so,u.f >v.f

e ged



Strongly Connected
Components

 WWW graph:
* Nodes: pages
 Edges: links from one page to another page

 Broder et al. study (2000): 200 million pages and 1.5 billion links
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Strongly Connected
Components

e Bowtle:

e Strongly connected component at the center of the WWW
(28%) of all nodes s
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Strongly Connected
Components

e |[slands: Isolated areas of the web

tubes
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Strongly Connected
Components

* |In: Possible to reach the giant

e Qut: Reachable from the giant

tubes
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Strongly Connected
Components

 Weird stuff: Tubes that move from In to Out bypassing
the giant

tubes
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Strongly Connected
Components

e Weird stuff: Tendrils to In and tendrils to Out

tubes
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Strongly Connected
Components

e Strongly connected component:

 Can reach any vertex from any other vertex




Strongly Connected
Components

e Strongly connected component

 This is NOT strongly connected
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* Thereis no way to get from D to A



Strongly Connected
Components

e Lemma: Let G; and G, be two strongly connected
subgraphs of a graph G and assume that there is a path
from a vertex in G to a vertex in G, and also a path from

a vertex of G, to G, then G; U G, is strongly connected




Strongly Connected
Components

o Proof: Take two nodes a and b in G, U G.

e If both are in G, then there is a path between a and b
because they are in G,



Strongly Connected
Components

o Proof: Take two nodes a and b in G, U G.

e If both are in G, then there is a path between a and b
because they are in G,



Strongly Connected
Components

e Ifa € V(G,) and b € V(G,), then we can move from a
to u and from u to v and then from v to b.

e After removing cycles, this is now a path from a to b



Strongly Connected
Components

e Similarly, if a € V(G,) and b € V(G,), then we can move
from a to v’ and from v’ to u’ and then from u’ to b.

e After removing cycles, this is now a path from a to b



Strongly Connected
Components

* A single node is a strongly connected subgraph

* For each strongly connected subgraph, we can try to
grow by adding other nodes

 |f a node a has a path to O
and from a strongly
connected subgraph, then
by the lemma, we can add
the node and get a bigger
strongly connected
subgraph

strongly connected




Strongly Connected
Components

e Strongly connected component : A maximal strongly
connected subgraph

* The nodes of any directed graph can be divided into
strongly connected components



Strongly Connected
Components

e Example:




Strongly Connected
Components

e Try it out by growing from individual nodes



Strongly Connected
Components

e Result:



Strongly Connected
Components

* |f we only look at the connected components we get the
SCC metagraph

* Nodes are the strongly connected components

 Edges represent the existence of an edge from one
component to the next



Strongly Connected
Components




Strongly Connected
Components

* The resulting metagraph has to be acyclic

e |f there is a cycle in the metagraph, then by the lemma,
the metanodes can be merged into bigger strongly
connected subgraphs



Strongly Connected
Components

e Example: Add two edges




Strongly Connected
Components

* Now we can start merging via the Lemma

e There is a path from components S to R and vice versa




Strongly Connected
Components

e S0 we merge




Strongly Connected
Components

e There is a path from RS to X and vice versa:




Strongly Connected
Components

* We can merge




Strongly Connected
Components

* Finally, we can merge Z with the new supernode




Strongly Connected
Components

* This can be generalized:

* Theorem: The metagraph is acyclic



Strongly Connected
Components

e How can we apply DFS to the problem of determining
connected components?

e The WWW graph in 2000 would have been to big for
anything but linear time algorithms



Strongly Connected
Components

e Answer:
e Use DFS several times

* |ncluding indirectly on the metagraph



Strongly Connected
Components

e |f we start DFS at a node in a strongly connected
component

 DFS will visit all nodes in the strongly connected
component by the white path theorem

2'3){%

E—G



Strongly Connected
Components

e |f we start DFS at A

 DFS will visit all nodes in the strongly connected
component by the white path theorem

e But also possibly other strongly connected components




Strongly Connected
Components

e Want to make sure that we start at a "sink" of the SCC
metagraph

 This we can do by running topological sort on the SCC
metagraph

e |f we only had it!

 But we can do something similar by running DFS on
the graph itself

e After we make sure that we are in sinks of the SCC graph,

we run DFS again to identify the strongly connected
components



Strongly Connected
Components

e To do this, need to run a DFS backward

* Reverse graph:

e Same nodes, but all edges are now reversed




Strongly Connected
Components

* How to build the reverse graph from adjacency lists?

e IfY isin the adjacency list of X:

e Then X is in the adjacency list of Y

T QM BEOQ o
QHMETD Q> OW
T &3 o g




Strongly Connected
Components

 Create empty adjacency list for the reverse graph

T QM BEOQ o
QHMETD Q> OW
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T QO EHEQOQ



Strongly Connected
Components

 Go through the adjacency list of all vertices
e Start out with A
e Find B
 Add A to the list for B
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Strongly Connected
Components

 Go through the adjacency list of all vertices
e Start out with A
e Find D
e Add A to the list for D
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Strongly Connected
Components

 Go through the adjacency list of all vertices
e Continue with B
e Find C
e Add B to the list for C
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Strongly Connected
Components

 Go through the adjacency list of all vertices
e Continue with B
e Find D
* Add B to the list for D

T QM BEOQ o

T QO EHEQOQ

B



Strongly Connected
Components

 Go through the adjacency list of all vertices
e Continue with B
e Find H
e Add B to the list for H

T QM BEOQ o

T QO EHEQOQ



Strongly Connected

Components

e Now continue
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Strongly Connected
Components

e Calculating the reverse graph costs

e creating empty adjacency lists for the reverse graph

* O(|V])

e going through all elements in the adjacency list and
add an element to one adjacency list for the reverse

graph
* O(|E])
e Total: O(| V| + | E|), i.e. linear in the size of the graph



Strongly Connected
Components

e |f we start out with A in the reverse graph, then DFS yields

O
Crmt (D ®
& ©
©

e The DFS forest has one component, with nodes in the
strongly connected component of A

e Same thing if we start out with any other node in the
strongly connected component



Strongly Connected
Components

* Now we have the basic idea of Kosaraju's algorithm
e Run DFS on the graph

* Run DFS again, but on the reversed graph, select the
nodes to visit in order of the finishing times of the first
run

e The trees in the DFS forest of the second run are the
strongly connected components of the graph



Strongly Connected
Components

e Example: Start in E




Strongly Connected
Components




Strongly Connected
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components

@/
<7

Q‘oo g‘ . \55,6



Strongly Connected
Components
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Components




Strongly Connected
Components




Strongly Connected




Strongly Connected
Components

e The visit in E Is done, we need to select a remaining white
vertex. We pick |



Strongly Connected
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Components




Strongly Connected
Components




Strongly Connected
Components




Strongly Connected
Components




Strongly Connected
Components
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Components




Strongly Connected
Components

 Again, DFS will select a white node. Let it be b



Strongly Connected
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components

* Now:
 Decorate each vertex with the finishing time obtained
* Reverse all edges (in linear time)

e Start DFS, but select starting vertices in decreasing
order of the finishing time

e This means we start with b



Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components
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Strongly Connected
Components




Strongly Connected
Components




Strongly Connected
Components

e \We have finished visit in b

 \We can print out its descendants
e {a,b,c}
e This is the first connected component

 We then select the white node with the highest finishing
time from the previous run: h



Strongly Connected
Components




Strongly Connected

Components
32



Strongly Connected
Components

 Again, we print out the descendants of h and now have
e {a,b,c}, {h}

 We then select the vertex with the next highest finishing
time



Strongly Connected
Components
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Strongly Connected

Components
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Strongly Connected

Components
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Strongly Connected

Components

s e AN,
G b ‘uw
fe::1114 / ‘\Q/

g:13

|: 26

9
1 25
218 0/ /0\
0: 8
p: 6 \ / //G
Q- 7 °/@

h 29 7.8

i: 23 n

i: 24

k: 21 x Q\\



Strongly Connected

Components
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Strongly Connected
Components
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Strongly Connected
Components

3,4 -
a \°

ﬁ gi SN b/ 1,6
N

d: 12
14
f: 11
g:13
h: 29 7,8 \
i: 23 n
it 24

k: 21 Q\\@
|: 26 990

m: 25 |

n: 18 AN

0: 8 18,19

p: 6 v

q. 7/



Strongly Connected
Components

e We admit the new tree as a SCC
e {a,b,c}, {h}, {l,i,k,j,m, n}

* Now we go with g
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Strongly Connected
Components
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Strongly Connected
Components

e Weadd {g,d,e, f} to the list of SCC



Strongly Connected
Components
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Strongly Connected
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Strongly Connected
Components

e At this point, we emit our final SCC as {o, p, g}



Strongly Connected
Components

 This example shows

 how the first pass DFS identifies SCC that are high up
in the SCC meta-graph

* how the DFS in the reverse graph identifies then SCC,
but because of the choice of the starting points, any
SCC that can be reached are already done and all
blackened



Strongly Connected
Components

e For any set of nodes U C V, we set
e U.d=min({u.d|u e U})
e U.f=max({u.f|u e U}

* This means:

e the discovery time of U is the earliest discovery time in
U

e the finish time of U is the latest finish time of a node in
U



Strongly Connected
Components

e | emma:

e Let C and C' be two strongly connected components of
the directed graph G = (V, E).

e Suppose there is an edge (#, v) withu € Candv € C’
e ThenC.f > (C'.f

finishes first



Strongly Connected
Components

Proof:

Assume that we discover a vertex in Cfirst

Let x be that vertex

Then there is a white path from x to any vertex in C, (maybe via v)
So x becomes an ancestor of all nodes in C,

Therefore, x finishes after all nodes in C, and has a later finishing time

finishes first



Strongly Connected
Components

e Assume that we discover a vertex x in C, first

e There cannot be a path from x to any node in C; or by
the previous lemma, the two SCC would be the same

finishes first




Strongly Connected
Components

e By the white path theorem, x is not going to be an
ancestor of any node in Cy, but it is going to be an

ancestor of everything in C,

» Therefore, x finishes before anything in C; can be
discovered.

° qed finishes first




Strongly Connected
Components

 Applied to the reverse graph, we get

e Let C and C' be two strongly connected components of
the directed graph G = (V, E).

e Suppose there is an edge (#, v) withu € Candv € C’

e Then C.f < C'.fin the DFS running on the reverse
graph of G



Strongly Connected
Components

e Theorem

 The algorithm correctly calculates the SCC of a graph

e Proof proceeds by induction on the number k of depth
first trees found in the second pass of DFS

e Induction base: k = 0 is trivial

» Induction step: Assume the first K SCCs have been
correctly generated



Strongly Connected
Components

o \We start out from a vertex u

u € C for a strongly connected component C

because we pick u in order of finishing time, any other
SCC (' has a finishing time in the first pass smaller than u

by the consequence of the lemma and induction
hypothesis, all edges that leave C in the reverse graph can
only be to SCC already emitted

All nodes in C must be white by induction hypothesis

Thus, the descendants of u are exactly the nodes in C



