
Algorithms
Overview



Algorithms
• A generic recipe for computation


• Finite sequence of instructions


• to solve a computational problem


• Should work on broad category of computers


• E.g. Algorithms for quantum computers, biological 
computers are / would be different



Algorithms
• Correctness


• Is the algorithm guaranteed to give the correct result


• Is the algorithm guaranteed to give the correct result using 
resources


• Performance


• Measured in resource use:


• Time


• Storage / memory


• Energy use


• Overwrites in an SSD, …



Standard Model of 
Computing

• What is presented to the programmer:


• Computer reads instructions from memory


• Computer acts on instructions by changing memory 
locations


• Example:  addi x, 5


• Load x into accumulator, load 5 into a register, add 
results, move accumulator results back into 
memory where x is located



Standard Model of 
Computing is an Idealization
• Instructions do not take the same amount of time


• Almost since the beginning of computer architecture


• Idealization: Fetch-Execute Cycle with fixed timing


• Instructions are not performed serially


• Pipelining of instructions


• Reordering of instructions by compiler or architecture



Standard Model of 
Computing is an Idealization
• Memory access is not uniform


• Early modification: Virtual Memory



Standard Model of 
Computing is an Idealization
• Modern modification:


• Registers 


• Cache Level 1


• Cache Level 2


• Cache Level 3


• Main Memory (DRAM)


• Storage


• Buffer - Cache - HDD block / SSD page



Standard Model of 
Computing is an Idealization
• Multi-threaded (e.g. multi-core) :


• Many instructions & access to variables are not thread-
safe


• E.g.: Can only argue that a flag is either set or not if 
the flag is "atomic" (with software and hardware 
support)


• Multi-core architecture manages to prevent a processor 
from having a different view of memory than another 
processor


• But this is getting more and more difficult



Standard Model of 
Computing is an Idealization
• Storage and Memory systems prioritize reads over writes


• In case of failure, bad things can happen:


• Can store a block


• Read from this block


• Power failure


• Read from the block:


• Value has changed



Standard Model of 
Computing

• Contract between system and programmer:


• System does what programmer wants, but in a different 
faster way


• With a few exceptions, which makes multi-threaded 
computing so challenging



Standard Model of 
Computing

• Turns out that the optimizations of modern computing 
systems do not create genuine new capabilities


• We can emulate a modern system using an old one


• We can even emulate a modern system using a model of 
computing used in the 30s and 40s to model what 
Mathematics can compute:


• Turing machine



DNA Computing
• DNA can store vast amounts of information in a very small 

space.


• Store data (key-value pair) by encoding in DNA sub-
sequences


• To look up by key:


• Introduce the compliment of the key's substring affixed to 
a magnetic bead


• Compliment bonds to DNA molecules with that key


• Extract these DNA molecules magnetically


• Sequence them for the result


• Does not change the basic capabilities



Quantum Computing
• Uses quantum phenomena for computing


• Especially super-position and entanglement


• Can be analog or digital


• Digital quantum computing uses quantum gates


• Difficulty now is getting up the number of q-bits in a system


• Could be faster than classical computers


• Example: Shor's algorithm for factoring integers, Boson 
sampling


• Will almost certainly force current cryptography to use much 
larger keys



Quantum Computing
• Does not seem to change what is computable


• Changes possibly dramatically the speed at which things 
can be computed



Algorithms
• Algorithms  Implementation


• An algorithm can be implemented more or less 
efficiently


• You can measure the speed of an implementation on a 
given system fairly accurately


• You can derive the performance of an algorithm using a 
computing model

≠



Algorithms
• Correctness


• Can we prove that the answer given by an algorithm is 
correct?


• via Automated proof methods


• via human reasoning


• Often involves pseudo-code



Algorithms
• Performance


• Needs to be measured independently of 
implementation


• Depends on the "instance size"


• Many problems in CS become proportionally more 
difficult as they grow


• Use an "asymptotic" notation to capture behavior as 
we "scale up"



Performance
• Computing uses resources


• Space:  How much storage is needed


• Time:  How many instructions are needed


• But it becomes more interesting:


• Some problems need to use storage (flash / disks)


• Storage is much slower


• Performance measurement: How many times does 
the algorithm need to access storage



Performance
• Parallel / Multi-threaded performance


• Almost all computers have limited capability to execute 
instructions in parallel


• E.g.: Develop data structures that are


• thread-safe


• lock-free (no locking of shared resources needed)


• wait-free (no waiting for a thread to access a data 
structure)



Impossibility Results
• Can all problems be solved with a computer


• Depends on the type of computer, but:


• In a very generic computing model, there are 
problems that cannot be solved



Impossibility Results
• Are there problems that can become prohibitively 

expensive?


• Answer: Probably yes.  There are classes of problems that 
become intractable as they scale up



Outlay of Class
• Goal:


• You are to develop the capability to argue about the 


• correctness


• performance


• of algorithms and data structures


• You are to develop the capability to invent simple 
algorithms and data structures


• You are to develop the capability to implement 
algorithms and data structures



Outlay of Class
• Contents: 


• Finite automata and regular expressions


• Recurrence, asymptotic comparisons, and divide-and-
conquer problems


• Fast Data Structures


• Dynamic and greedy programming


• Graph Algorithms


• Limits of Computability


• Complexity Classes



Introduction to 
Performance



Counting Operations
• Type 1: All operations take the same time


• Type 2: Only count certain operations


• Type 3: Count how often the instructions in the body of a 
loop are executed



Counting Operations
• Example 1:

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Identify the inner loop

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Count the number of times the inner loop is executed

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Let  be the number of elements in the arrayn

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Let  be the number of elements in the array


• For  = 0:  for j in range(1, n): 

•  repetitions

n

i

n − 1

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Let  be the number of elements in the array


• For  = 0:   repetitions


• For :  repetitions


• …


• For :  repetitions

n

i n − 1

i = 1 n − 2

i = n − 1 0

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations

• Let  be the number of elements in the array


•  repetitions


• i.e.  repetitions

n

(n − 1) + (n − 2) + … + 2 + 1 + 0
(n − 1) ⋅ n

2

def bubble_sort(an_ar): 
    for i in range(len(an_ar)): 
        for j in range(i+1, len(an_ar)): 
            if an_ar[i] > an_ar[j]: 
                an_ar[i], an_ar[j] = an_ar[j], an_ar[i]



Counting Operations
• Often, the input determines the number of operations


• Example: Quicksort


• Recursive operations based on 


• select a random pivot


• partition array around random pivot


• quick-sort each partition


• If partition are very small, use another sorting 
algorithms



Counting Operations
• Partition cost: n comparisons for n elements in array


• Best Case:


• Pivots are always chosen to divide the array evenly


• ((1+1+1)+1+(1+1+1))+1+((1+1+1)+1+(1+1+1))


• Ideal array size is  with n steps


• If elements are distinct:


• Only one pivot


• At each step, we have to partition all elements that were 
not pivot previously

2n+1 − 1



Counting Operations
• Quicksort Best Case Performance:


•   array elements with n steps


• First step: Compare pivot with  elements


• Second step: Previous pivot is no longer compared


• Compares two pivots with a total of  
elements


• Third step: Previous pivots are no longer used


• Compare a total of four pivots with a total of 

2n+1 − 1

2n+1 − 2

2n+1 − 3

2n+1 − 7



Counting Operations
• Quicksort Best Case Performance:


•   array elements with n steps


• Total number of comparisons:


•  


            = 


• 


• Total number of comparisons is 


•

2n+1 − 1

n ⋅ (2n+1 − 1) − (1 + 2 + 4 + … + 2n−1)

2n−1(4n − 1) − n

N = 2n+1 − 1 ⟹ n = log2(N + 1) − 1

1 − log2(N) +
1
4

(1 + N)(4(log2(N + 1) − 1)



Counting Operations
• Quicksort Worst Case:


• Pivot is always the smallest element


• If there are  elements in the array:


•  rounds reducing the array by one element 
each time


•  

comparisons

N

N − 1

(N − 1) + (N − 2) + …1 =
N(N − 1)

2


