
Algorithms
Overview

Algorithms
• A generic recipe for computation

• Finite sequence of instructions

• to solve a computational problem

• Should work on broad category of computers

• E.g. Algorithms for quantum computers, biological
computers are / would be different

Algorithms
• Correctness

• Is the algorithm guaranteed to give the correct result

• Is the algorithm guaranteed to give the correct result using
resources

• Performance

• Measured in resource use:

• Time

• Storage / memory

• Energy use

• Overwrites in an SSD, …

Standard Model of
Computing

• What is presented to the programmer:

• Computer reads instructions from memory

• Computer acts on instructions by changing memory
locations

• Example: addi x, 5

• Load x into accumulator, load 5 into a register, add
results, move accumulator results back into
memory where x is located

Standard Model of
Computing is an Idealization
• Instructions do not take the same amount of time

• Almost since the beginning of computer architecture

• Idealization: Fetch-Execute Cycle with fixed timing

• Instructions are not performed serially

• Pipelining of instructions

• Reordering of instructions by compiler or architecture

Standard Model of
Computing is an Idealization
• Memory access is not uniform

• Early modification: Virtual Memory

Standard Model of
Computing is an Idealization
• Modern modification:

• Registers

• Cache Level 1

• Cache Level 2

• Cache Level 3

• Main Memory (DRAM)

• Storage

• Buffer - Cache - HDD block / SSD page

Standard Model of
Computing is an Idealization
• Multi-threaded (e.g. multi-core) :

• Many instructions & access to variables are not thread-
safe

• E.g.: Can only argue that a flag is either set or not if
the flag is "atomic" (with software and hardware
support)

• Multi-core architecture manages to prevent a processor
from having a different view of memory than another
processor

• But this is getting more and more difficult

Standard Model of
Computing is an Idealization
• Storage and Memory systems prioritize reads over writes

• In case of failure, bad things can happen:

• Can store a block

• Read from this block

• Power failure

• Read from the block:

• Value has changed

Standard Model of
Computing

• Contract between system and programmer:

• System does what programmer wants, but in a different
faster way

• With a few exceptions, which makes multi-threaded
computing so challenging

Standard Model of
Computing

• Turns out that the optimizations of modern computing
systems do not create genuine new capabilities

• We can emulate a modern system using an old one

• We can even emulate a modern system using a model of
computing used in the 30s and 40s to model what
Mathematics can compute:

• Turing machine

DNA Computing
• DNA can store vast amounts of information in a very small

space.

• Store data (key-value pair) by encoding in DNA sub-
sequences

• To look up by key:

• Introduce the compliment of the key's substring affixed to
a magnetic bead

• Compliment bonds to DNA molecules with that key

• Extract these DNA molecules magnetically

• Sequence them for the result

• Does not change the basic capabilities

Quantum Computing
• Uses quantum phenomena for computing

• Especially super-position and entanglement

• Can be analog or digital

• Digital quantum computing uses quantum gates

• Difficulty now is getting up the number of q-bits in a system

• Could be faster than classical computers

• Example: Shor's algorithm for factoring integers, Boson
sampling

• Will almost certainly force current cryptography to use much
larger keys

Quantum Computing
• Does not seem to change what is computable

• Changes possibly dramatically the speed at which things
can be computed

Algorithms
• Algorithms Implementation

• An algorithm can be implemented more or less
efficiently

• You can measure the speed of an implementation on a
given system fairly accurately

• You can derive the performance of an algorithm using a
computing model

≠

Algorithms
• Correctness

• Can we prove that the answer given by an algorithm is
correct?

• via Automated proof methods

• via human reasoning

• Often involves pseudo-code

Algorithms
• Performance

• Needs to be measured independently of
implementation

• Depends on the "instance size"

• Many problems in CS become proportionally more
difficult as they grow

• Use an "asymptotic" notation to capture behavior as
we "scale up"

Performance
• Computing uses resources

• Space: How much storage is needed

• Time: How many instructions are needed

• But it becomes more interesting:

• Some problems need to use storage (flash / disks)

• Storage is much slower

• Performance measurement: How many times does
the algorithm need to access storage

Performance
• Parallel / Multi-threaded performance

• Almost all computers have limited capability to execute
instructions in parallel

• E.g.: Develop data structures that are

• thread-safe

• lock-free (no locking of shared resources needed)

• wait-free (no waiting for a thread to access a data
structure)

Impossibility Results
• Can all problems be solved with a computer

• Depends on the type of computer, but:

• In a very generic computing model, there are
problems that cannot be solved

Impossibility Results
• Are there problems that can become prohibitively

expensive?

• Answer: Probably yes. There are classes of problems that
become intractable as they scale up

Outlay of Class
• Goal:

• You are to develop the capability to argue about the

• correctness

• performance

• of algorithms and data structures

• You are to develop the capability to invent simple
algorithms and data structures

• You are to develop the capability to implement
algorithms and data structures

Outlay of Class
• Contents:

• Finite automata and regular expressions

• Recurrence, asymptotic comparisons, and divide-and-
conquer problems

• Fast Data Structures

• Dynamic and greedy programming

• Graph Algorithms

• Limits of Computability

• Complexity Classes

Introduction to
Performance

Counting Operations
• Type 1: All operations take the same time

• Type 2: Only count certain operations

• Type 3: Count how often the instructions in the body of a
loop are executed

Counting Operations
• Example 1:

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Identify the inner loop

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Count the number of times the inner loop is executed

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Let be the number of elements in the arrayn

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Let be the number of elements in the array

• For = 0: for j in range(1, n):

• repetitions

n

i

n − 1

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Let be the number of elements in the array

• For = 0: repetitions

• For : repetitions

• …

• For : repetitions

n

i n − 1

i = 1 n − 2

i = n − 1 0

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations

• Let be the number of elements in the array

• repetitions

• i.e. repetitions

n

(n − 1) + (n − 2) + … + 2 + 1 + 0
(n − 1) ⋅ n

2

def bubble_sort(an_ar):
 for i in range(len(an_ar)):
 for j in range(i+1, len(an_ar)):
 if an_ar[i] > an_ar[j]:
 an_ar[i], an_ar[j] = an_ar[j], an_ar[i]

Counting Operations
• Often, the input determines the number of operations

• Example: Quicksort

• Recursive operations based on

• select a random pivot

• partition array around random pivot

• quick-sort each partition

• If partition are very small, use another sorting
algorithms

Counting Operations
• Partition cost: n comparisons for n elements in array

• Best Case:

• Pivots are always chosen to divide the array evenly

• ((1+1+1)+1+(1+1+1))+1+((1+1+1)+1+(1+1+1))

• Ideal array size is with n steps

• If elements are distinct:

• Only one pivot

• At each step, we have to partition all elements that were
not pivot previously

2n+1 − 1

Counting Operations
• Quicksort Best Case Performance:

• array elements with n steps

• First step: Compare pivot with elements

• Second step: Previous pivot is no longer compared

• Compares two pivots with a total of
elements

• Third step: Previous pivots are no longer used

• Compare a total of four pivots with a total of

2n+1 − 1

2n+1 − 2

2n+1 − 3

2n+1 − 7

Counting Operations
• Quicksort Best Case Performance:

• array elements with n steps

• Total number of comparisons:

•

 =

•

• Total number of comparisons is

•

2n+1 − 1

n ⋅ (2n+1 − 1) − (1 + 2 + 4 + … + 2n−1)

2n−1(4n − 1) − n

N = 2n+1 − 1 ⟹ n = log2(N + 1) − 1

1 − log2(N) +
1
4

(1 + N)(4(log2(N + 1) − 1)

Counting Operations
• Quicksort Worst Case:

• Pivot is always the smallest element

• If there are elements in the array:

• rounds reducing the array by one element
each time

•

comparisons

N

N − 1

(N − 1) + (N − 2) + …1 =
N(N − 1)

2

