Reductions

Thomas Schwarz, SJ

Reduction

e So far we have shown:

* There are problems that are not tractable
algorithmically

 Halting Problem

e We defined a class & of problems that are considered

computationally tractable, even as the instance size
scales up

e We have defined a class /' & of problems where we
can verify a solution effectively

Reduction

 Fundamental Conjecture in Complexity
o P+ NP

e Reason why people believe in this conjecture
e There are problems that are /' 9?-complete

e Aproblem P € NP is N P-complete if
e (P€ P)=> (P = NP)

Reduction

* (Can use the solution of one problem to solve another problem
 Example: Matrix multiplication and Matrix Squaring

* |f you can solve matrix multiplication, you can certainly solve
matrix squaring

* However, it also works the other way around:

e Multiply square matrix A with square matrix B

2
0 A AB 0
Iculate left si f =
, Calculate left side o (B O) <O BA)

* From the algorithmic standpoint: squaring a matrix is exactly as
complicated as multiplying two matrices

Reduction

 Formally, problem X reduces to problem Y if there is a
reduction that converts instances of X to instances of Y
and a translation that takes a solution of Y and makes it
into a solution for X that solves the original instance.

Algorithm for X

Instance | . Instance I . Solution .
of X } = e Reduction [of Y } » Algorithm of Y P> for I | Reduction

 Matrix multiplication reduces to matrix squaring

Reduce: Given A, B, construct (

Reduction

e calculate the square

translate result (

0

Instance I’
[of Y } >

AB 0
BA

0 A
0

)—>AB

Algorithm for X

Algorithm of Y

)

Reduction

 We usually apply reduction to existence problems
* Answer is True/False

e No translation iIs needed

Algorithm for X

Reduction

e X reduces polynomially to Y

* Reduction works in polynomial time

e Read(Y is at least as hard as X)

Algorithm for X

Reduction

e Assume X <, Yand Y € L. Then X € .

 Proof: if we have a polynomial reduction, then the
diagram below explains how we get a polynomial time
algorithm for X

Algorithm for X

Instance | . Instance I’ . Solution .
of X } - ¢ Reduction { of Y } > Algorithm of Y > for I | Reduction

A New Formal Definition of
N P - complete

e X € N APis NP —complete
e |[F AND ONLY IF

e VYE NP : Y, X

A New Formal Definition of
N P - complete

e Theorem:

e X € N P-complete AND X € &
e |[MPLIES

o« P=NP

A New Formal Definition of
N P - complete

* Proof:

o If Y € NP, then by completeness
e V<, X

* Thus:

Algorithm for Y

 There is a polynomial time algorithm for Y

e Thus: Y € &

A New Formal Definition of
N P - complete

e Circuit Satisfiability is A/ S - complete

* We have argued that we can express any problem in
N P using a circuit

Guessed Solution

e This reduces the
problem to Circuit
Satisfiability

e Therefore:

e Circuit Satisfiability
remains
N P —complete

Family of ./ S2-complete
problems

 Boolean Formula Satisfiability:

e (Given a boolean formula, determine whether there is an
assignment to the variables such that the formula
becomes true

X=2>V)VEAYVIOVEATAZIAXDY))

 Given an assignment, can check the truth value of the
formula in polynomial time

e Thus, Boolean Formula Satisfiability is in A/ &

Family of ./ S2-complete
problems

 We can reduce boolean formula satisfiability to boolean
circuit satisfiabllity

* Need to show that boolean circuit satisfiability is at
least as hard as boolean formula satisfiability

* Given an instance of boolean circuit satisfiability, show
that it can be reduced to boolean formula satisfiability

Family of ./ S2-complete
problems

Need to "translate" a boolean circuit into a formula

.

e g T T =
. '—‘\)@ X3 |—>— i
Each circuit element becomes part of a Boolean formula

X, =b,x,=cVx,x;=a®c x,=x2AXx3
XSZ_'(.X4VCZ)

Make this into a single formula

Xi=((b)ANxy,=cVx)A...

Family of ./ S2-complete
problems

 Final formula is satisfiable exactly if the circuit is
satisfiable

* Translation is in polynomial time

Family of ./ S2-complete
problems

e 3-SAT : Satisfiability of a boolean formula in conjunctive
normal form with clauses with three literals

@vbveo)A@vaveAbvdVvd)A@vd\Vr)...

Family of ./ S2-complete
problems

 Reduction to Boolean Formula Satisfiability

* Need to transform the boolean circuit satisfiability
problem to 3-SAT

e Reduction: 3—SAT <, Boolean Circuit Sat

e As before, describe the circuit in a boolean formula

» However, now each gate can be expressed with only
three-clause conditions:

Family of ./ S2-complete
problems

* TJranslate the circuit into one with two-entry boolean gates

X4
NAND X3
AND
v
X
| Xy 8
w on D
X
y |
u NOR

Z | X, 5

(xl = —I(v/\y)) A ((x2 = —l(sz))) A (x3 :xl/\w) A (x4 = —I(XVZ) A
(x5 =x1/\x2) A (x6 =x3EBx4) A (x7 = —I(y/\x5)) A (x8 =x6\/x7) A Xg

Family of ./ S2-complete
problems

e Clauses directly represent gates

 Transform the clauses into conjunctive normal form with
three literals

e Trick
e X=@VpPpVPAXVDPVHAXVDPpV g AKXV pVq)
° xVy=(xVpr)/\(XVyV_'p)

* This blows up the representation, but only by a constant
amount

Family of ./ S2-complete
problems

* As before, the circuit is satisfiable if and only if the
formula is satisfiable

* Ergo: We can solve 3-SAT implies we can solve Boolean
Circuit Satisfiability

Family of ./ S2-complete

problems
e What about 2-SAT

e Clauses are of the form (a V b), which is equivalent to
—“a=>b

 Create a graph:

* \ertices are variables and their negation

() ©

Family of ./ S2-complete
problems

 Draw an edge if there is a clause equivalent to x = y in
the formula

b= -c 1s equivalent to (=bV -c)

Family of ./ S2-complete
problems

 Draw an edge if there is a clause equivalent to x = y in
the formula

b= -c 1s equivalent to (=bV -c)
which is equivalent also to c¢= -b

Family of ./ S2-complete
problems

 Draw an edge if there is a clause equivalent to x = y in
the formula

a=>b means (—aVb)
which also means —b = —a

Family of ./ S2-complete
problems

e Assume that x and —x are in a cycle. Then we can
conclude that x implies —x that implies x.

 Thus, there is no possibility to find a truth assignment that
works

* |f there is never such a cycle, then we just start with one
variable and assign it true, then we follow the implications
et cet.

Family of ./ S2-complete
problems

e Example:

&
* Assign b=True (o) @)
(@)
* Then a=False

e Then c=True

e Then d=False

Family of ./ S2-complete
problems

* Jo calculate this, we calculate the strongly connected
components

e |f there is a component that contains at most one of a
variable and its negation, then assign those literals True

By working through all the components, we obtain a
satisfiable assignment

e |f there is a component that contains both a variable and
its negative, then the formula is not satisfiable

e ERGO: we can solve 2-SAT with DFS in polynomial time

Graph 3-Colorability

 Graph 3-colorability

* Given a graph, can we color its vertices with three
colors such that no edge is between vertices with the

same color

@

o

3 colorable not 3 colorable

Graph 3-Colorability

e Claim: 3—SAT <, 3—color

e Given a 3—SAT instance, we construct (in polynomial

time) an instance of 3—color such that the graph is
colorable if and only if the boolean formula is satisfiable

Graph 3-Colorability

 We create a node for each variable and its negation
* We also create a triangle with labels B, False, and True

e Connect as shown below

Graph 3-Colorability

* This graph is clearly colorable

e Start with the upper triangle

Graph 3-Colorability

 Then for each variable, we get to decide whether we want
to color the variable or its negation with the same color as

True
@
_/

 This "encodes" a truth assignment to the variables

Graph 3-Colorability

 Add for each clause in the formula a 6-node 13-edge
gadget

 Add the six nodes, then add edges as shown below

e Example: "aV b Vc

Graph 3-Colorability

e |f the graph is three colorable, then:

 The gadget ensures that at least one element in the
clause is True

e Example: "aV b Vc

Graph 3-Colorability

 Assume that we have an assignment to the variables that
satisfies the formula and all of the clauses

e Clauseis "aV bV c and a and b are true and c is
false

 Color the variable nodes accordingly:

Graph 3-Colorability

e Some node colors now follow by necessity

Graph 3-Colorability

e Color the node under a True-colored vertex with the False
color and the one underneath with Blue

Graph 3-Colorability

e The last vertex color follows

Graph 3-Colorability

* This gadget is now three-colored
Do the same thing for all gadgets

* Get a three coloring of the graph

Graph 3-Colorability

* \ice versa, assume that you have a three coloring

* The base part of the graph assures that each literal is
colored either with Red (for True) or with Green (for False)

'G

Graph 3-Colorability

e |f the three coloring where to assign Green (the color of
Falsehood) to the literal nodes, then what would happen

Graph 3-Colorability

e \We can deduce some colors

* The middle layer of hodes has to be blue, because they
have a Red neighbor (the true node) and a Green
neighbor

Graph 3-Colorability

e The vertex on the lower row and to the left needs to be
Green because it has a Blue and a Red neighbor

Graph 3-Colorability

* The vertex on the lower row on the right has to be Red

Graph 3-Colorability

e But now the middle node has a Red, a Green, and a Blue
neighbor

 Thus the graph is not 3-colorable

* Therefore: The graph is 3-colorable implies that in the
gadget, one vertex is colored Red (the color of Truth)

 Not to be confused with https://www.youtube.com/
watch?v=8epG4AezdYg which is just propaganda but
the color of the Holy Spirit

Graph 3-Colorability

* S0, the complete graph is 3-colorable if in all gadgets at
least one of the literal nodes is colored Red

e Then all clauses are satisfied

e Then the formula is satisfied

Conseqguences

 There is a large set of known NP-complete problems

e Many problems that appear in practice can be shown to be NP-
complete

* You look through the catalogue of NP-complete problems and
reduce your problem to one of them

e (If | can solve my problem polynomially, then | can solve that

problem polynomially, but that would mean that & = A4 92, which
we believe to be false)

e |f this is the case:
e You cannot expect a solution that scales well

e But it might be perfectly solvable for the instance sizes that you
need to solve

