Homework 1 Solutions

Problem 1:

The easiest way is to just start with the starting state and find out the list of states which can be reached on a 0 or 1 symbol. For each line, the resulting set of states is then treated the same. This gives the following table

State	0	1
{a}	{C}	{ f }
{C}	{d}	{}
{d}	{}	{c,d}
{c,d}	{d}	{c,d}
{f}	{}	{g}
{g}	{}	{h}
{h}	{}	{f}

The accepting states are {c}, {c,d}, and {f}. We can draw a automaton:

The alternative is to take the ε -closure of all states, which means that we start with $\{a, b, e\}$.

15

13

14

Problem 2:

We can solve this in a single program, using confidence intervals of 5σ , using plt.errorbar. However, in order to actually see errorbars, we need to restrict ourselves to small arguments (below right).

```
import time
import numpy as np
import matplotlib.pyplot as plt
def rec fib(n):
    if n <= 1:
       return n
   else:
        return rec fib(n-1)+rec fib(n-2)
def timer(n):
    start = time.time()
    for _ in range(50):
       accu = rec_fib(n)
   end = time.time()
   return (end-start)/50
def main(n,m):
   xx, mus, sigmas = [], [], []
    for i in range(n,m+1):
       xx.append(i)
       counts = [timer(i) for in range(30)]
       mus.append(np.mean(counts))
       sigmas.append(5*np.std(counts)/np.sqrt(30))
   plt.errorbar(x=xx, y=mus, yerr=sigmas)
   plt.xlabel('argument')
   plt.ylabel('average time (msec)')
   plt.title('Runtime for Recursive Fibonacci')
   plt.show()
```


The recurrence relation is $r_n = r_{n-1} + r_{n-2} + 2$, as there are two recursive call, the first of which will create r_{n-1} recursive calls and the second one will create r_{n-2} recursive calls. For n = 2, $r_2 = 2 = f_1 + f_2 + f_3 - 2$. Assume that $r_n = f_{n-1} + f_n + f_{n+1} - 2$ is true for all $n \le m$. Then

$$r_{m+1} = 2 + r_m + r_{m-1}$$

= 2 - 2 + f_{m-1} + f_m + f_{m+1} - 2 + f_{m-2} + f_{m-1} + f_m
= -2 + f_m + f_{m+1} + f_{m+2}

where in the last step we used the Fibonacci recursive formula.