
Homework 5 Solutions
Problem 1:
(a) There are ways to order the first row and ways to order the back row. There are two
ways to place a team in front and the other one in the back. This gives a total of
arrangements. (The factor of 2 is arguable, as the problem can be read to say that one team
has to be in the front.)

(b) Assume we have a valid arrangement. If we interchange a pair of players consisting of the
front and the back player with another pair, then the new arrangement is also valid. Thus, we
can order the back rank and still have a valid arrangement.

(c) Starting with any valid arrangement, we can order the back rank. Assume we have two
pairs of players, and from the front-row team and and from the back-row team.
Assume that is standing in front of and is standing in front of . Thus, and

. Assume further that . If , then we have the picture below.

First, and , so . Second, and , so . Thus, we can
interchange the positions of players and and still have a valid arrangement.

This means we can order the first row as well.

n! n!
2 ⋅ n! ⋅ n!

A B X Y
A X B Y A < X

B < Y X < Y B ≤ A

B ≤ A A < X B < X A < X X ≤ Y A < Y
A B

X Y

A B

X Y

AB

(d) Verifying all or possible arrangements takes super-exponential time. If we
order the two teams by height we use time for sorting each team and time
for comparing the heights of the two players in position .

Problem 2:
(a) If we are given three elements , then there are six possibilities for selecting the
maximum and the minimum, namely ; , , , , and , corresponding to all
the permutations of the three elements. As seen in class, if two comparisons were possible to
extract both maximum and minimum of the three elements, then we would have an algorithm
that orders the three elements in a binary tree with two interior nodes. However, a binary tree
with two interior nodes can only have three leaves, so it would not be able to distinguish the
six possible cases.

We can easily write an algorithm with three comparisons per runs.

def minmax(a,b,c):
	 if a<b<c:
	 	 return a,c
	 elif a<c<b:
	 	 return a,b
	 elif b<a<c:
	 	 return b,c
	 elif b<c<a:
	 	 return b,a
	 elif c<a<b:
	 	 return c,b
	 elif c<b<a:
	 	 return c,a

(b) Assume , so for an integer . This gives us comparisons
within each group, and then comparisons to find the maximum of the group maxima
and comparisons to find the minimum of the group minima. This gives us a total of

 comparisons in this case.

Assume now , so that . We still have comparisons within each
group, but now have possible maxima and possible minima, so that we have

now comparisons.

Assume now , so for an integer . There are comparisons
within the groups and one comparison for the remaining two elements. As before, there are

n! ⋅ n! 2 ⋅ n! ⋅ n!
Θ(n log(n)) Θ(n)

i

a, b, c
abc acb bac bca cab cba

n ≡ 0 (mod 3) n = 3m m 3m
m − 1

m − 1
5m − 2 =

5n
3

− 2

n ≡ 1 (mod 3) n = 3m + 1 3m
m + 1 m + 1

5m =
5(n − 1)

3
=

5n
3

−
5
3

n ≡ 2 (mod 3) n = 3m + 2 m 3m
m

a<b

b<c

comparisons to determine the maximum of the group maxima and as well comparisons to
determine the minimum of the group minima. This gives a total of

	 	

comparisons.

Problem 3:

m

3m + 1 + m + m = 5m + 1 =
5(n − 2) + 3

3
=

5n
3

+
7
3

cat hen

bat dik fly koi rat

eel emucod cow fox gib gnu owl olmide jay yak zhoboaant ape

Inserting gib

cat hen

bat dik fly koi rat

eel emucod cow fox gib gnu owl olmide jay yak zhoboaant ape

Overflow. Rotates are impossible, split.

cat hen

bat dik fly gib koi rat

eel emucod cow fox gnu owl olmide jay yak zhoboaant ape

Overflow. Only left rotate is possible.

"dik" goes up, "cat" goes down

 hen dik

bat cat fly gib koi rat

eel emucod cow fox gnu owl olmide jay yak zhoboaant ape

Need to reattach the dangling pointer.

 hen dik

bat cat fly gib koi rat

eel emucod cow fox gnu owl olmide jay yak zhoboaant ape

final result:

Problem 4:

To delete orc, we exchange it with its predecessor:

After deleting orc, we have an underflow. The only way to cure the underflow is by a right
rotate, where hen goes up and kit goes down:

ant ape bat bee bug cat cob dog elk fox gar goa hen olm owl pen ram ray roe teg yac

rat sow

orc

ox

pug

gib kitdzoboa

cod fly

ant ape bat bee bug cat cob dog elk fox gar goa hen orc owl pen ram ray roe teg yac

rat sow

olm

ox

pug

gib kitdzoboa

cod fly

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ram ray roe teg yac

rat sow

olm

ox

pug

gib hendzoboa

cod fly

We can delete “roe” directly, as it is located in a leaf node. No restructuring is needed.

To delete rat, we exchange it with its predecessor and then delete. This gives an underflow.

To remedy the underflow, we can try to rotate, but the only sibling has only one key in it. We
therefore need to merge the empty leaf and the leaf with ‘ray’. This is done by moving ‘ram’
downwards into the merged leaf.

ant ape bat bee bug cat cob dog elk fox gar goa kit owl pen ram ray teg yac

rat sow

olm

ox

pug

gib hendzoboa

cod fly

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:

