
Modes of
Computations

Thomas Schwarz, SJ

Computation Principles
• Representations hold information

• Computation is a sequence of representations

• Computations can be open or closed

• Computations have characteristic speeds of resolution

• Complexity measures the time or space essential to
complete computations

• Finite representations of real processes always contain
errors.

Classical Computation
• Data is represented by elements (switches) that have two

or more states

• For technical reasons today: usually two states

• Information in such a switch is called a bit

Classical Computation
• What is presented to the programmer:

• Computer reads instructions from memory

• Computer acts on instructions by changing memory
locations

• Example: addi x, 5

• Load x into accumulator, load 5 into a register, add
results, move accumulator results back into
memory where x is located

Standard Model of
Computing is an Idealization
• Instructions do not take the same amount of time

• Almost since the beginning of computer architecture

• Idealization: Fetch-Execute Cycle with fixed timing

• Instructions are not performed serially

• Pipelining of instructions

• Reordering of instructions by compiler or architecture

Standard Model of
Computing is an Idealization
• Memory access is not uniform

• Early modification: Virtual Memory

Standard Model of
Computing is an Idealization
• Modern modification:

• Registers

• Cache Level 1

• Cache Level 2

• Cache Level 3

• Main Memory (DRAM)

• Storage

• Buffer - Cache - HDD block / SSD page

Standard Model of
Computing is an Idealization
• Multi-threaded (e.g. multi-core) :

• Many instructions & access to variables are not thread-
safe

• E.g.: Can only argue that a flag is either set or not if
the flag is "atomic" (with software and hardware
support)

• Multi-core architecture manages to prevent a processor
from having a different view of memory than another
processor

• But this is getting more and more difficult

Standard Model of
Computing is an Idealization
• Storage and Memory systems prioritize reads over writes

• In case of failure, bad things can happen:

• Can store a block

• Read from this block

• Power failure

• Read from the block:

• Value has changed

Standard Model of
Computing

• Contract between system and programmer:

• System does what programmer wants, but in a
different, usually faster way

• With a few exceptions, which makes multi-threaded
computing so challenging

Standard Model of
Computing

• Turns out that the optimizations of modern computing
systems do not create genuine new capabilities

• We can emulate a modern system using an old one

• We can even emulate a modern system using a model of
computing used in the 30s and 40s to model what
Mathematics can compute:

• Turing machine

Quantum Computing
• Data is represented by qubits

• qubits can exist as a super-imposition of two states

• Qubit state is a linear combination of 0 and 1

• , probability amplitude

• Probability of measuring qubit as zero is , as 1 is
, and so

• qubits can be entangled: State of one qubit is
correlated to the state of another qubit

α |0 > + β |1 > α, β ∈ ℂ

α2

β2 α2 + β2 = 1

Quantum Computing
• Once a qubit is measured, it is either 0 or 1

• Before a qubit is measured, it has an infinite amount of
information

Quantum Computing
• A quantum logic gate operates on a small number of qubits

• Representation:

•
Represent a register of qubits as

• Gate can be represented as unitary matrices

• Actual hardware gates introduce errors

• Need quantum error correction

n

α1

β1
α2

β2
⋮
αn

βn

Quantum Computing vs.
Classical Computing

• No known way to simulate a quantum computational
model with a classical computer

• A quantum computer with qubits with quantum
gates can be simulated with a classical circuit with

 classical gates

S(n) T(n)

O(2S(n)T(n)3)

Quantum Computing vs.
Classical Computing

• There are some quantum algorithms that are better than
classical algorithms:

• Grover’s algorithm: Search over items in an
unstructured database in time

• Shor’s algorithm: Can factor a number in time
polynomial in .

n
O(n)

n
log(n)

Quantum Computing versus
Classical Computing

• Current state of the art:

• Quantum computers can be simulated by classical
computers (with exponential slowdown)

• But there are certain quantum computations which we
do not know how to simulate classically without
exponential slowdown

Limits to Computation
• Landauer’s principle (debated)

• Lower theoretical limit of energy consumption of
computation

• Erasing one bit of information takes ,
where is the Boltzmann constant and is
temperature in .

> kBT ln(2)
kB T

Ko

DNA Computation
• Adleman’s experiment

• Given a graph and two vertices, is there a path
between them that visits all other vertices exactly once

• Encode vertices as a 20 elements nucleotide sequence

• Encode edges as last 10 nucleotides of starting vertex
with first 10 nucleotides of ending vertex

• DNA ligase glues DNA molecules together,
corresponding to a path

DNA computing
• Edges are complemented to allow binding

vertex 1 vertex 2

edge 1-2

DNA computing
• Combination of DNA strands forms all possible paths

• Use Polymerase Chain Reaction (PCR) to make multiple
copies of only those strands that have the right starting
and ending points

• Use electrophoresis to force DNA molecules to travel
through a gel

• This separates strands by length

• We now have paths of the correct length

DNA computing
• Tag city strands with a magnetic substance and mix with

the rest

• This allows to extract all paths that have a given vertex
in them

• Do this for all cities

• Resulting strands are the ones representing a path of
the right length with all the cities in them

• This is a solution

DNA computing versus
classical computing

• Adleman’s experiment showed an enormous number of
computation done in short time

• This is because DNA can store information at a very
high density: 18 Mbits per inch

• But:

• DNA steps still take substantial time

• Need to keep very pure reagents in a small temperature
range, so DNA computing is expensive

