Modes of Computations

Thomas Schwarz, SJ

Computation Principles

- Representations hold information
- Computation is a sequence of representations
- Computations can be open or closed
- Computations have characteristic speeds of resolution
- Complexity measures the time or space essential to complete computations
- Finite representations of real processes always contain errors.

Classical Computation

- Data is represented by elements (switches) that have two or more states
 - For technical reasons today: usually two states
 - Information in such a switch is called a bit

Classical Computation

- What is presented to the programmer:
 - Computer reads instructions from memory
 - Computer acts on instructions by changing memory locations
 - Example: addi x, 5
 - Load x into accumulator, load 5 into a register, add results, move accumulator results back into memory where x is located

- Instructions do not take the same amount of time
 - Almost since the beginning of computer architecture
 - Idealization: Fetch-Execute Cycle with fixed timing
- Instructions are not performed serially
 - Pipelining of instructions
 - Reordering of instructions by compiler or architecture

- Memory access is not uniform
 - Early modification: Virtual Memory

- Modern modification:
 - Registers
 - Cache Level 1
 - Cache Level 2
 - Cache Level 3
 - Main Memory (DRAM)
 - Storage
 - Buffer Cache HDD block / SSD page

- Multi-threaded (e.g. multi-core) :
 - Many instructions & access to variables are not threadsafe
 - E.g.: Can only argue that a flag is either set or not if the flag is "atomic" (with software and hardware support)
 - Multi-core architecture manages to prevent a processor from having a different view of memory than another processor
 - But this is getting more and more difficult

- Storage and Memory systems prioritize reads over writes
- In case of failure, bad things can happen:
 - Can store a block
 - Read from this block
 - Power failure
 - Read from the block:
 - Value has changed

Standard Model of Computing

- Contract between system and programmer:
 - System does what programmer wants, but in a different, usually faster way
 - With a few exceptions, which makes multi-threaded computing so challenging

Standard Model of Computing

- Turns out that the optimizations of modern computing systems do not create genuine new capabilities
- We can *emulate* a modern system using an old one
- We can even *emulate* a modern system using a model of computing used in the 30s and 40s to model what Mathematics can compute:
 - Turing machine

Quantum Computing

- Data is represented by qubits
 - qubits can exist as a super-imposition of two states
 - Qubit state is a linear combination of 0 and 1
 - $\alpha \, | \, 0 > + \, \beta \, | \, 1 >$, $\alpha, \beta \in \mathbb{C}$ probability amplitude
 - Probability of measuring qubit as zero is α^2 , as 1 is β^2 , and so $\alpha^2 + \beta^2 = 1$
 - qubits can be *entangled*: State of one qubit is correlated to the state of another qubit

Quantum Computing

- Once a qubit is measured, it is either 0 or 1
- Before a qubit is measured, it has an infinite amount of information

Quantum Computing

- A quantum logic gate operates on a small number of qubits
 - Representation:

Represent a register of *n* qubits as

 $\begin{array}{c} \alpha_2 \\ \beta_2 \\ \vdots \\ \alpha_n \end{array}$

- Gate can be represented as unitary matrices
- Actual hardware gates introduce errors
 - Need quantum error correction

Quantum Computing vs. Classical Computing

- No known way to simulate a quantum computational model with a classical computer
- A quantum computer with S(n) qubits with T(n) quantum gates can be simulated with a classical circuit with $O(2^{S(n)}T(n)^3)$ classical gates

Quantum Computing vs. Classical Computing

- There are some quantum algorithms that are better than classical algorithms:
 - Grover's algorithm: Search over *n* items in an unstructured database in time $O(\sqrt{n})$
 - Shor's algorithm: Can factor a number n in time polynomial in log(n).

Quantum Computing versus Classical Computing

- Current state of the art:
 - Quantum computers can be simulated by classical computers (with exponential slowdown)
 - But there are certain quantum computations which we do not know how to simulate classically without exponential slowdown

Limits to Computation

- Landauer's principle (debated)
 - Lower theoretical limit of energy consumption of computation
 - Erasing one bit of information takes $> k_B T \ln(2)$, where k_B is the Boltzmann constant and T is temperature in K^o .

DNA Computation

• Adleman's experiment

- Given a graph and two vertices, is there a path between them that visits all other vertices exactly once
- Encode vertices as a 20 elements nucleotide sequence
- Encode edges as last 10 nucleotides of starting vertex with first 10 nucleotides of ending vertex
- DNA ligase glues DNA molecules together, corresponding to a path

DNA computing

• Edges are complemented to allow binding

DNA computing

- Combination of DNA strands forms all possible paths
- Use Polymerase Chain Reaction (PCR) to make multiple copies of only those strands that have the right starting and ending points
- Use electrophoresis to force DNA molecules to travel through a gel
 - This separates strands by length
 - We now have paths of the correct length

DNA computing

- Tag city strands with a magnetic substance and mix with the rest
 - This allows to extract all paths that have a given vertex in them
- Do this for all cities
 - Resulting strands are the ones representing a path of the right length with all the cities in them
 - This is a solution

DNA computing versus classical computing

- Adleman's experiment showed an enormous number of computation done in short time
 - This is because DNA can store information at a very high density: 18 Mbits per inch
- But:
 - DNA steps still take substantial time
 - Need to keep very pure reagents in a small temperature range, so DNA computing is expensive