Divide and Conquer

Thomas Schwarz, SJ

Divide and Conquer

- Generic recipe for many solutions:
 - *Divide* the problem into two or more smaller instances of the same problem
 - Conquer the smaller instances using recursion (or a base case)
 - Combine the answers to solve the original problem

- Assume we want to multiply two *n*-bit integers with *n* a power of two
 - Divide: break the integers into two n/2-bit integers

$$x = 2^{\frac{n}{2}} x_L + x_R$$

$$x_L$$

$$x_R$$

$$y = 2^{\frac{n}{2}} y_L + y_R$$

$$y_L$$

$$y_R$$

 Conquer: Solve the problem of multiplying of n/2 bit integers by recursion or a base case for n=1, n=2, or n=4

$$x = 2^{\frac{n}{2}} x_L + x_R$$

$$x_L$$

$$x_R$$

$$y = 2^{\frac{n}{2}} y_L + y_R$$

$$y_L$$

$$y_R$$

 $x_L \cdot y_L \quad x_L \cdot y_R \quad x_R \cdot y_L \quad x_R \cdot y_R$

- Now combine:
 - In the naïve way:

$$x \cdot y = (x_L \cdot 2^{\frac{n}{2}} + x_R) \cdot (y_L \cdot 2^{\frac{n}{2}} + y_R)$$
$$= x_L \cdot y_L \cdot 2^n + (x_L \cdot y_R + x_R \cdot y_L) \cdot 2^{\frac{n}{2}} + x_R \cdot y_R$$

 $x \cdot y = (x_L 2^{\frac{n}{2}} + x_R) \cdot (y_L 2^{\frac{n}{2}} + y_R)$

 $= x_{L} \cdot y_{L} 2^{n} + (x_{L} \cdot y_{R} + x_{R} \cdot y_{L}) \cdot 2^{\frac{n}{2}} + x_{R} \cdot y_{R}$

- We count the number of multiplications
 - Multiplying by powers of 2 is just shifting, so they do not count
 - T(n) number of bit multiplications for integers with 2^n bits:

$$T(0) = 1$$

• Recursion:

$$T(n+1) = 4T(n)$$

• Solving the recursion T(0) = 1

T(n+1) = 4T(n)

• Intuition:

 $T(n) = 4T(n-1) = 4^2T(n-2) = 4^3T(n-3) = \dots = 4^nT(0) = 4^n$

- Proposition: $T(n) = 4^n$
- Proof by induction:
 - Induction base:

$$T(0) = 1 = 4^0$$

- Induction step: Assume $T(n 1) = 4^{n-1}$. Show $T(n) = 4^n$
 - Proof: T(n) = 4T(n-1) Recursion Equation = $4 \times 4^{n-1}$ Induction Assumption = 4^n

- Since the number of bits is $m = 2^n$
 - Number of multiplications is

$$S(m) = T(n) = 4^n = (2^n)^2 = m^2$$

• This is not better than normal multiplication

- Now combine:
 - Instead: $x \cdot y = (x_L 2^{\frac{n}{2}} + x_R) \cdot (y_L 2^{\frac{n}{2}} + y_R)$ = $x_L \cdot y_L \cdot 2^n + (x_L \cdot y_R + x_R \cdot y_L) \cdot 2^{\frac{n}{2}} + x_R \cdot y_R$

- Use $(x_L \cdot y_R + x_R \cdot y_L) = (x_L + x_R) \cdot (y_L + y_R) x_L \cdot y_L x_R \cdot y_R$
- This reuses two multiplications that are already used

• We need to deal with the potential overflow in calculating

 $(x_L + x_R) \cdot (y_L + y_R)$

• This can be dealt with in constant time

- Now, we only do three multiplications of 2^n bit numbers in order to multiply two 2^{n+1} bit numbers
- The recursion becomes

$$T(0) = 1$$
 $T(n + 1) = 3T(n)$

- Solving the recurrence T(0) = 1 T(n + 1) = 3T(n)
 - Heuristics:

$$T(n) = 3T(n-1) = 3^2T(n-2) = \dots = 3^nT(0) = 3^n$$

• As before prove exactly using induction

• The multiplication of two $m = 2^n$ -bit numbers takes

S(m) = T(n) $= 3^{n}$ $= 3^{\log_2(m)}$ $= \exp(\log(3^{\log_2(m)}))$ $= \exp(\log_2 m \log 3)$ $= \exp(\log m \log 3 \frac{1}{\log 2})$ $= \exp(\log(m^{\log_2 3}))$ $= m^{\log_2 3}$

• This way, multiplication of *m*-bit numbers takes $m^{1.58496}$ bit multiplications

- Can be used for arbitrary length integer multiplication
- Base case is 32 or 64 bits

• But can still do better using Fast Fourier Transformation

- Given an array of ordered integers, a pointer to the beginning and to the end of a portion of the array, decide whether an element is in the slice
- Search(array, beg, end, element)

- Divide: Determine the middle element. This divides the array into two subsets
- Conquer: Compare the element with the middle element.
 If it is smaller, find out whether the element is in the left half, otherwise, whether the element is in the right half
- Combine: Just return the answer to the one question

```
def binary_search(array, beg, end, key):
    if beg >= end:
        return False
    mid = (beg+end)//2
    if array[mid]==key:
        return True
    elif array[mid] > key:
        return binary_search(array, beg, mid, key)
    else:
```

return binary_search(array, mid+1, end, key)

- Let *T*(*n*) be the runtime of binary_search on a subarray with *n* elements
- Recursion: There is a constant c such that

 $T(1) \le c$ $T(n) \le T(n/2) + c$

- The constant represents the cost of
 - comparing an element
 - all the work done besides the invocation of the function

• Solving the recursion

 $T(n) \leq T(n/2) + c$ $\leq T(n/4) + 2c$

 $\leq T(n/2^m) + mc$

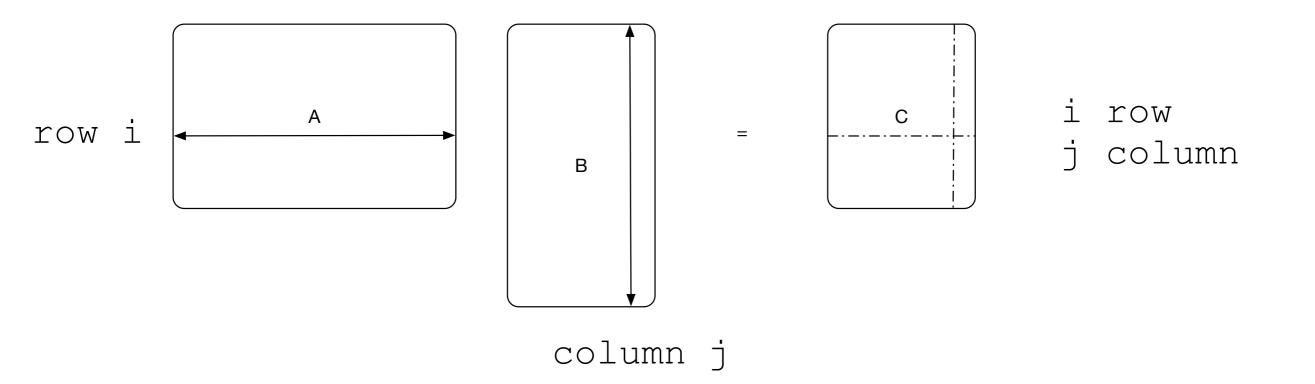
• If $m \ge \log_2 n$ then $T(n) \le T(1) + mc = (m+1)c$

• With other words, binary search on *n* elements takes time

 $\propto \log_2(n)$

• Definition of Matrix Multiplication

•
$$(a_{i,j})_{1 \le i \le m \atop 1 \le j \le n} \cdot (b_{j,k})_{1 \le k \le p}^{1 \le j \le n} = (\sum_{j=1}^n a_{i,j}b_{j,k})_{1 \le k \le p}^{1 \le i \le m}$$



- Cost of definition:
- n multiplications for all mk elements in the product
 - Square $n \times n$ matrices: n^3 elements

- Divide and conquer: Assume $n = 2^r$ is a power of two.
- We can use the following theorem:
 - Break each matrix into four sub-matrices of size $2^{r-1} \times 2^{r-1}$ and calculate

•
$$\begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{21} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{21} + A_{22}B_{22} \end{pmatrix}$$

- As is, a divide and conquer algorithm gives us 8 multiplication of matrices half the size.
- Let m(n) be the number of multiplications needed to multiply two $2^n \times 2^n$ matrices using divide and conquer
- Obviously: m(1) = 1
- Recursion: m(n + 1) = 8m(n)

- Claim: $m(n) = 2^{3n}$
- Proof: Induction base: $m(0) = 1 = 2^{3 \cdot 0}$
- Induction step:
 - Hypothesis: $m(n) = 2^{3n}$
 - To show: $m(n + 1) = 2^{3(n+1)}$
 - Proof:

 $m(n+1) = 8m(n) = 8 \cdot 2^{3n} = 2^3 \cdot 2^{3n} = 2^{3n+3} = 2^{3(n+1)}$

• That is the same as the normal algorithm

- Strassen: Can use 7 matrix multiplications to calculate all eight products
 - $\mathbf{M}_1 := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2})$
 - $\mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1}$
 - $\mathbf{M}_3 := \mathbf{A}_{1,1}(\mathbf{B}_{1,2} \mathbf{B}_{2,2})$
 - $\mathbf{M}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} \mathbf{B}_{1,1})$
 - $\mathbf{M}_5 := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2}$
 - $\mathbf{M}_6 := (\mathbf{A}_{2,1} \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2})$
 - $\mathbf{M}_7 := (\mathbf{A}_{1,2} \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2})$

• Then can get all the sub-matrices on the right:

•
$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$

- $C_{1,2} = M_3 + M_5$
- $C_{2,1} = M_2 + M_4$
- $C_{2,2} = M_1 M_2 + M_3 + M_6$

- Now the recurrence becomes
 - m(n+1) = 7m(n), m(0) = 1
- which is obviously solved by
 - $m(n) = 7^n$.

- Remember that the size of the matrix was $2^n \times 2^n$.
- Thus, if M(n) is the number of multiplications for an $n \times n$ matrix with power of 2 rows, then

•
$$M(n) = m(\log_2(n)) = 7^{\log_2(n)}$$

Since

 $\log_2(7^{\log_2(n)}) = \log_2(n)\log_2(7) = \log_2(7)\log_2(n) = \log_2(n^{\log_2(7)})$ $\bullet M(n) = n^{\log_2(7)} \approx n^{2.80735}$

- The algorithm can be extended for matrices that
 - have number of rows = number of columns not a power of 2
 - are not square

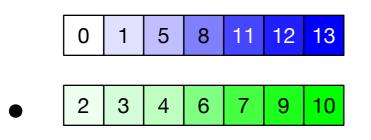
Merge-Sort

- Idea:
 - It is easy to create a single sorted array out of two sorted arrays
 - Look at the first elements in each array
 - Move the smaller one into the target array

Merge-Sort

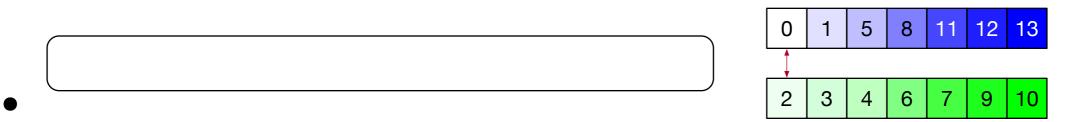
```
def merge(arr1, arr2):
   target = [ ]
   ione, itwo = 0, 0
   while ione<len(arr1) and itwo<len(arr2):
      if arr1[ione]<arr2[itwo]:</pre>
         target.append(arr1[ione])
         ione += 1
      else:
         target.append(arr2[itwo])
         itwo += 1
   if ione == len(arr1):
      target += arr2[itwo:]
   else:
      target += arr1[ione:]
```

- Example
 - Merge

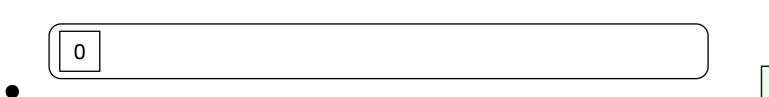


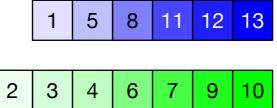
• Initialize target list, set two indices equal to 0

• Compare elements at indices

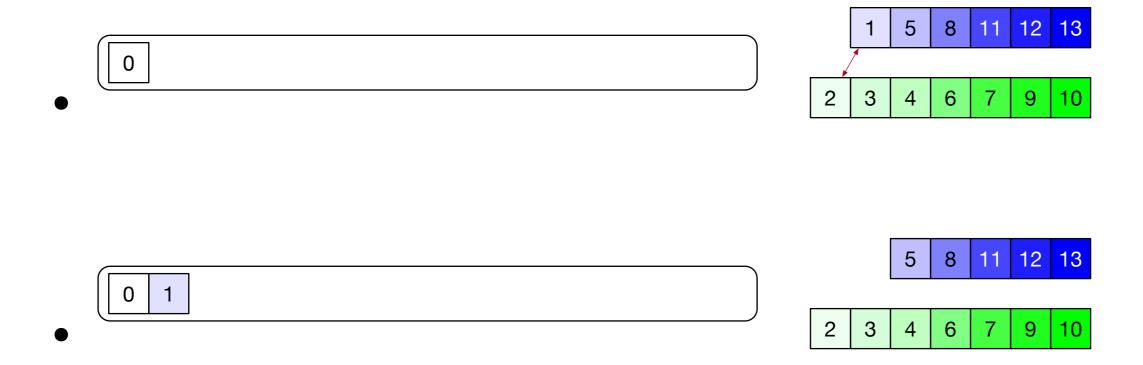


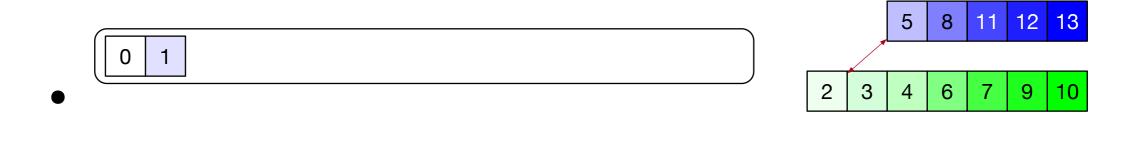
• 0 < 2: Select 0 and move first index to right

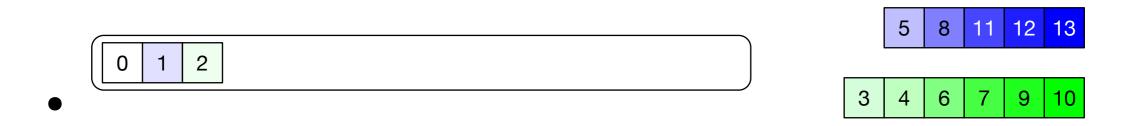


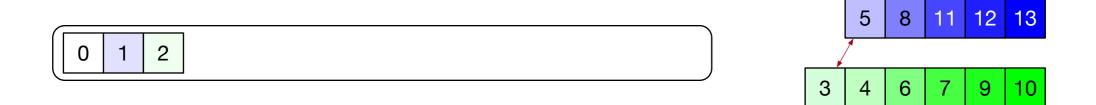


• Repeat









G)	5	ο		12	13
	0	1	2	3						
L)			-7		10

4.4

F

4

0

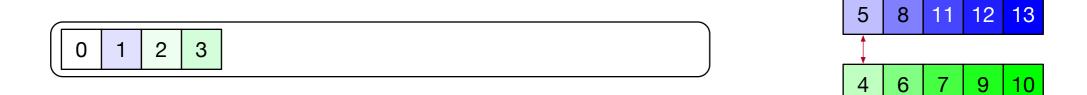
6

10

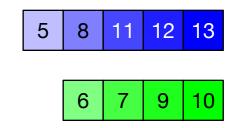
9

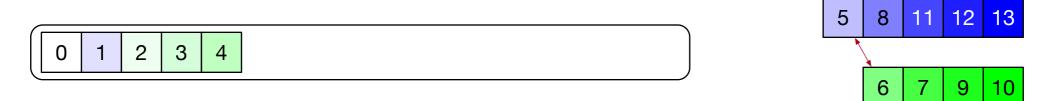
10

ΙU

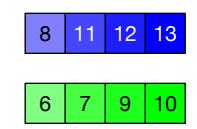


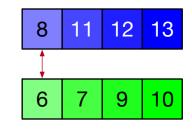
1 2 3	
	, , ,





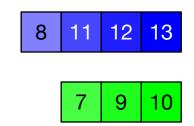
0	1	2	3	4	5

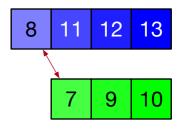




4 5

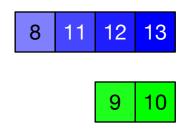
0	1	2	3	4	5	6

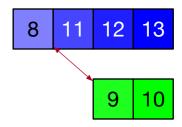




	4	3	2		1		0	0 1 2 3 4 5
5	5	4 5	3 4 5	2 3 4 5	2 3 4 5	1 2 3 4 5	1 2 3 4 5	5

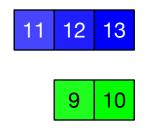
0	1	2	3	4	5	6	7

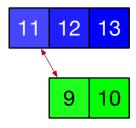




0	1	2	3	4	5	6	7
---	---	---	---	---	---	---	---

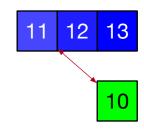
0	1	2	3	4	5	6	7	8





					_
0	1	2	3	4	

Γ.										
		4	0					-		
	0		2	3	4	5	6	/	8	9
l										



	0	1	2	3	4	5	6	7	8	9
્ા										

								_		_
0	1	2	3	4	5	6	7	8	9	10

0	1	2	3	4	5	6	7	8	9	10

Second Index has reached the end of array: Expand with first

0	1	2	3	4	5	6	7	8	9	10	11	12	13
		2	0	т				0	0			12	

- Divide and conquer:
 - Divide array in two halves

• Apply recursively merge-sort

• Merge both arrays

```
def merge_sort(arr):
    if len(arr) < 2:
        return arr
    mid = len(arr)//2
    arr1, arr2 = arr[:mid], arr[mid:]
    arr1 = merge_sort(arr1)
    arr2 = merge_sort(arr2)
    return merge(arr1, arr2)
```

- In practice:
 - Merge-sort is not so good on very small arrays
 - Use something as bad as bubble-sort for arrays of small size

- Performance:
 - Merge of two arrays with $n_1 + n_2 = n$ elements total?
 - Up to n 1 comparisons
 - Recurrence formula for the number of comparisons is approximately
 - $C(n) = 2 \cdot C(n/2) + n$

• Ad hoc solution of the recurrence relation

•
$$C(n) = 2C(n/2) + n$$

. . .

• = 2 · (2C(n/4) +
$$\frac{n}{2}$$
) + n = 4C(n/4) + n + n

$$\bullet \qquad = 8C(n/8) + n + n + n$$

• = 16C(n/16) + n + n + n + n

•
$$= n + n + ... n = (\log(n) + 1)(n)$$

Quick-Sort

- Merge Sort:
 - Divide is simple
 - Work is done in the merge step
- Quick Sort
 - Work is done in the divide step
 - Conquer part is simple
 - Key Idea:
 - Pick a pivot, form two arrays: those smaller than the pivot and those larger than the pivot