Huffman Coding

Greedy Algorithms

Prefix-free Codes

* Binary, variable length code

 Binary: code symbols are 0 and 1

e Variable length: code words have variable length
* Jo allow decoding:

* no prefix of a code word can be part of another code
word

e Otherwise:

e Cannot decide easily between prefix and complete

(00101110101)

Prefix-free Codes

e Prefix codes can

be represented as

binary trees

o | eft branch is

labelled with O,

right with 1

e | eaves
correspond to
symbols

e Path to leaf is
code for
symbol

f(5?\
{ % 4N

0 1

A AN

010 011 111
0 1

bk

1100 1101

Prefix-free Codes

e Start at top /léilOOOlOlOOlOl
Sy 4y
AN

y
1100 1101

Prefix-free Codes

. Start at top 1010100010100101

e First letter is 1:

e Go to the right

§ % 4 %
iy

\
4%

Prefix-free Codes

. Start at top 1010100010100101

e First letter is 1:

e Go to the right

e Have processed 1

§ % 4 %
§y 4

y
1100 1101

Prefix-free Codes

. Start at top 1010100010100101

e First letter is 1:
\

 (Go to the right P\/ \P\
e Have processed 1 o / 1
§ % 43

[y dn

y
1100 1101

Prefix-free Codes

. Start at top 1010100010100101

e First letter is 1:

e Go to the right P\/ \P\
e Have processed 1 KOS o
/
Y ¢

\

R

[y dn

y
1100 1101

e Second letter is O:

Prefix-free Codes

. Start at top 1010100010100101

* First letteris 1: /Q\
e Go to the right P\/
e Have processed 1

e Second letter is O: @{ é%

e (Go to the left

Prefix-free Codes

. Start at top 1010100010100101

* First letteris 1: /Q\
e Go to the right P\/
e Have processed 1

e Second letter is O: @{ é%

e (Go to the left

e We are in a leaf

Prefix-free Codes

Start at top

First letter is 1:

* Go to the right

e Have processed 1
Second letter is O:

* Go to the left

e We are in a leaf

Emit the value of the leaf:

d

010

\

©

011

10100010100101

A
AR
4y [\

10

R

1100 1101

e Restart at the top

Prefix-free Codes

10100010100101

e Next letter is 1

Prefix-free Codes

e Restart at the top 10100010100101

e Next letter is 1

e Go to the right

/% 4%
o4

\
4 %

Prefix-free Codes

 Restart at the top V100010100101

* Next letteris 1 /Q\
e Go to the right P\/
* Process repeats

J %
TN

Preflx free codes

 Decoding 1010100010100101

e Start at top
/C{ }D\ e Follow bits
e 10 — d
(@/ <@/ e 10 — d
}% }D\ e 10 — d
e 00 — a

e 010 — b
@
010 011 111 * 10 —ad

0 1

é%

Preflx free Codes

e Your turn:

e 11001111101011010
00

i
I8!

Answer

e Your turn:
P\/ \/Q\ * 110011111010110100
0
* 1100 -e
@/ }% @/ }D\ e 111-g
. 1101 - f
e 011 -cC
@ %é ~ + 010-b
. e 00-a

SR

Huffman Coding

 QObviously, there are many binary trees with a certain
number of leaves

e |f the symbols appear with different frequencies, then we
want to encode frequent ones with short codes and
infrequent ones with longer codes

e Huffman Coding:

 Greedy algorithm to calculate an optimal encoding

Huffman Coding

* Measure of goodness
» Frequency of symbols f(x)
» Depth of corresponding leaf = length of encoding d(x)

 Average Encoding Costs B = Z f(x) - d(x)

Huffman Coding
AN

1100 1101

B=2x0054+3x01254+3x0.175+2x0054+4x0.1+4x02+3x03=3.12

Huffman Coding

B=4x0054+4x0054+3x0.14+2x02+3x%x0.1254+3x0.1754+2x%x0.3 =26

Huffman Coding

e As we can see, different trees have different expected
encoding length

Huffman Coding

 Let T be a binary (encoding) tree and let 7’ be the tree
obtained by swapping two leaves y and w.

e Then the difference in the B-values is

(f(y) = fw)(dr(w) — dp(y))

Huffman Coding

e Proof:

* The only difference are the addends corresponding to y
and w

Huffman Coding

e What does

BT = B(T) = (f0) = fon)) (dw) = 4)

mean?

o If f(y) > f(w) then y better be up higher in the tree or we
can gain by swapping

Huffman Coding

e Lemma: There exists an optimal tree such that the two
lowest-frequency symbols are neighbors

 Furthermore, they have the highest distance from the
root

Huffman Coding

e Proof:

* Let y and w be the two symbols with the lowest
frequency

e If there is a tie, take the ones with the biggest depth

 We are going to show that we can transform the tree

into a better (or equally good) one where they are
neighbors

e Assume that d(w) > d(y)

Huffman Coding

e Assume that there is another leaf 7 at larger distance than
w

e 7 has higher frequency and higher distance from root

Swap w and z

Huffman Coding

Swap w and z

T T

e How does the B-value change?

. BT = B(D) = (f2) = o)) (dyow) — dy(2)
>0 <0
e |t goes down, i.e. the new tree is better

Huffman Coding

* We now know that we can have a better or equally good
tree where w Is a leaf at furthest distance from the root

e Case distinctions based on the sibling of w
e yand w are siblings
 w has another sibling

e W has no sibling

Huffman Coding

e Case Distinction:
* Case 1: y and w are siblings

* We are done, this is what we are supposed to show

Huffman Coding

e Case 2: whas asibling z

e Then f(z) > f(y) and d(z) = d(w) = d(y)

Swap y and z

B(T) = B(T) = (f0) = fon)) (drow) = dy(»))

Huffman Coding

Swap y and z

e Since f(z) > f(y) and d(z) = d(w) > d(y)

e [fweswapyandz

. B(T')— B(T) = <f(y) _ f(z)> (dT(z) _ dT(y)> s Zero or negative

 We are lowering the B-value, so we get a better (or equally good)
tree

Huffman Coding

e Case 3:
* w has no sibling

* Then we can move w up and get a better tree

e The only thing that changes is d-(w), which becomes

lower
some parent some parent
not a leaf »

Move w up to get a better tree

Huffman Coding

e The "Greedy" property
e A greedy algorithm is a step-by-step algorithm

At each step, make an optimal decision based only
on the information in the current step

e |n our case:

* How do we reduce the problem of finding an optimal
tree to a simpler one

* Already know that the two least frequent symbols are
siblings in an optimal tree

Huffman Coding

 Reduction step:

* Merge the two least frequent code symbols

Huffman Coding

e Create a new 'character' yw

e Left: alphabet is X Right: alphabet is 2 — {y, w} U {yw}

Huffman Coding

e Create a new 'character' yw

* Frequencyis f(yw) = f(y) +f(w)

Huffman Coding

* Everything else stays the same

Huffman Coding

* Need to show that this step does not counter optimality.

e Lemma: If the tree T obtained on the alphabet
> — {y,w} + {yw} is optimal, then the tree T" replacing
the yw node with y and w is also optimal

Huffman Coding

e Proof:

* First we calculate the change in the B-values

Huffman Coding

* Proof:
* First we calculate the change in the B-values

B(T") — B(T) = ZfT«:)d (c) =), fr(c)dy(c)

CEX

Using the definition

Huffman Coding

e Proof:

* First we calculate the change in the B-values

B(T") = B(T) =) frlc)dr(c) =) fr(e)dy(c)

ce’ CEX

= frOW)dr(Yw) — fr(0dr(y) — fr(w)dr(w)

We are summing up mostly over the same elements,

so most addends cancel out and this is what it is left

Huffman Coding

e Proof:

* First we calculate the change in the B-values

B(T") = B(T) =) frlc)dr(c) =) fr(e)dy(c)

ce’ CEX

= frOW)dr(Yw) — fr(0dr(y) — fr(w)dr(w)
= JrOW)dp(Yw) — fr(y)dp(y) — fr(w)dr(y)

y and w are siblings and therefore have the same distance from the

root

Huffman Coding

e Proof:

* First we calculate the change in the B-values

B(T") = B(T) =) frlc)dp(c) =) fir(c)d(c)

ce’ CEX

= JpOw)dp(yw) — fr(V)dr(y) — fr(w)dp(w)
= JrOW)dp(Yw) — fr(y)dp(y) — fr(w)dr(y)
= (fr(y) +fr(w)dr(y) — 1) = fz(0d(y) — fr(w)d(y)

The combined node is located at a level one up compared to the single nodes for

y and w

Huffman Coding

e Proof:

* First we calculate the change in the B-values

B(T') — B(T) =) fr(c)d(c) —) fi(c)dy(c)

ced’ CEX

= frW)dp(w) — f;(0dr(y) — fr(w)dp(w)

= fryw)dr(yw) — fr(0dr(y) — fr(w)dr(y)

= (f7(y) + frm)dr(y) = 1) = f(0)dr(y) = fr(w)di(y)
= — () = fr(w)

Huffman Coding

e S0, by dividing the node yw we have to pay a penalty of

JQ) + f(w).

Huffman Coding

* Now, assume that the left tree is optimal and the right tree
IS not optimal

Huffman Coding

e Then there exists a tree § that is better the tree with y and
1%

 We can assume that in this tree, y and w are leave nodes
because of the previous lemma

T

Huffman Coding

e We now do the same merge step for S and T

T after merglng

f(y)+f(w) f(y)+f(w)

S after

Huffman Coding

* The B-value for the tree on the right is the B-value of S
minus f(w) + f(y)

 Which is equal or worse than of the tree on the left

Huffman Coding

* The B-value for the tree on the right is the B-value of S

minus f(w) + f(y)

 Which is equal or worse than of the tree on the left

e Which is the B-value of T plus f(w) + f(y)

Huffman Coding

e Thus, S does not have a better B-value

Huffman Coding

Huffman’s algorithm:

If there Is only one symbol, create a single node tree
Otherwise, select the two most infrequent symbols
Combine them with a common ancestor O
Give the common ancestor the sum of the frequencies
Treat the ancestor as a symbol with this frequency

Repeat until there is only one symbol

Huffman Coding

e Example:

e Absolute frequencies are

e a— 120
e b — 29
e c — 534
e d— 34
e ¢ — 2549
e f— 321

e g—45

Huffman Coding

e Example:
 Absolute frequencies are

e a— 120,b — 29,c — 534,d — 34, e — 2549, f —
321, g — 45

e Combine b and d into (bd)

Huffman Coding

e Example:
 Absolute frequencies are

e a— 120,b — 29,c — 534,d — 34, e — 2549, f —
321, g — 45

e Combine b and d into (bd)

e a-120, c-534, e-2549, {-321, g - 45, ®) (d) 63

a — 120, b — 29, ¢ — 534, d — 34, e — 2549,
f — 321, g — 45

Huffman Coding

e Example:

o
e a-120, c - 534, e -2549, {-321, g - 45, 63
o
e Combinegand® ®

e a-120,c-534,e-2549,1-321,¢ © -108

a — 120, b — 29, ¢ — 534, d — 34, e — 2549,
f — 321, g — 45

Huffman Coding

e Example:

e a-120,c-534,e-2549,f-321,0 @ -108

e Combineaand e ®

e Obtainc-534,e-2549,f-321, & ® - 228

a — 120, b — 29, ¢ — 534, d — 34, e — 2549,
f — 321, g — 45

Huffman Coding

e Example:
(2
() (@)
) @
e c-9534,e-2549,1-321, o © - 228
(2
() (@)
ORENC)
e Combinefandé &
O
@ ®
() ()
) @
e C-534,e-2549,¢ @ - 549

a — 120, b — 29, ¢ — 534, d — 34, e — 2549,
f — 321, g — 45

Huffman Coding

e c-534,e-2549, & & - 549
e Combine c with the tree

e Then combine with e

a — 120, b — 29, ¢ — 534, d — 34, e — 2549,
f — 321, g — 45

Huffman Coding

Huffman Coding

e B-value needs relative frequencies

>>> total = 120+429+534+43442549+321+45

>>> 29/total*6+34/total*6+45/total*5+120/
total*44+321/total*3+534/total*2+2549/total*1
1.5591960352422907

Huffman Coding

* Notice how much choice we have in building this tree

* We can switch the order of the trees that we put

together

* For this one, the encoding is

O oW © HhQ O

1

01

001
0001
00001
000000
000001

Huffman Coding

e Try it out yourself

e a— 0.23
e ¢ — 0.35
e i — 0.16
e 0 —0.15

e u— 0.11

Huffman Coding

e Solution
e Havea — 0.23,e — 0.35,1— 0.16,0 — 0.15, u — 0.11

* First combine o and u for 'ou’ with frequency 0.26

e a— 0.23
e ¢ — 0.35
e | —0.106

e ou— 0.26

Huffman Coding

e Solution
e Have a — 0.23,e — 0.35,i — 0.16, ou — 0.26
e Combineiand a
e ¢-0.35
e ai-0.39
e ou-0.26

Huffman Coding

e Solution
e Have e-0.35,ali-0.39, ou-0.26
e Combine ou with e
e ¢(ou) 0.61
e ai 0.39

Huffman Coding

e Solution
e Have e(ou) - 0.61 ai- 0.39
e Combine to get (e(ou)) (ai) with frequency 1.00

Huffman Coding

e Solution

* Have (e(ou)) (ai) with frequency 1.00

e Translate to tree

Huffman Coding

e Solution

o Label tree edges /Q\

g
() @ O

ONO

Huffman Coding

e Solution

 Read off encoding /@\

e a— 10 0 \Q

e ¢ — 01 0

¢ i— 11 Q @ @
e 0 — 000 0 1

e u— 001 @ @

Huffman Coding

e Solution
e Determine B-value from tree
O}l1
e a— 0.23 \Q
e ¢ — 0.35 0 0 1
¢ i —0.16 Q @ @

e 0 — 0.15

0 1
e u— 0.11 @ @

3*0.114+3*%0.15+2*0.16+2*0.35+2*0.23=
2.2600000000000002

