Greedy Algorithms

- Binary, variable length code
 - Binary: code symbols are 0 and 1
 - Variable length: code words have variable length
- To allow decoding:
 - no prefix of a code word can be part of another code word
 - Otherwise:
 - Cannot decide easily between prefix and complete

00101

- Prefix codes can be represented as binary trees
 - Left branch is labelled with 0, right with 1
 - Leaves
 correspond to
 symbols
 - Path to leaf is code for symbol

Start at top

- Start at top
- First letter is 1:
 - Go to the right

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1
- Second letter is 0:

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1
- Second letter is 0:
 - Go to the left

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1
- Second letter is 0:
 - Go to the left
 - We are in a leaf

- Start at top
- First letter is 1:
 - Go to the right
 - Have processed 1
- Second letter is 0:
 - Go to the left
 - We are in a leaf
- Emit the value of the leaf:
 d

- Restart at the top
 - Next letter is 1

- Restart at the top
 - Next letter is 1
 - Go to the right

- Restart at the top
 - Next letter is 1
 - Go to the right
 - Process repeats

- Decoding 1010100010100101
- Start at top
- Follow bits
 - 10 d
 - 10 d
 - 10 d
 - 00 a
 - 010 b
 - 10 d
 - ...

- Your turn:
 - 11001111110101101000

Answer

- Your turn:
 - 11001111110101101000
 - 1100 e
 - 111 g
 - 1101 f
 - 011 c
 - 010 b
 - 00 a

- Obviously, there are many binary trees with a certain number of leaves
- If the symbols appear with different frequencies, then we want to encode frequent ones with short codes and infrequent ones with longer codes
 - Huffman Coding:
 - Greedy algorithm to calculate an optimal encoding

- Measure of goodness
 - Frequency of symbols f(x)
 - Depth of corresponding leaf = length of encoding d(x)

 \mathcal{X}

• Average Encoding Costs $B = \sum f(x) \cdot d(x)$

 $B = 2 \times 0.05 + 3 \times 0.125 + 3 \times 0.175 + 2 \times 0.05 + 4 \times 0.1 + 4 \times 0.2 + 3 \times 0.3 = 3.12$

 $B = 4 \times 0.05 + 4 \times 0.05 + 3 \times 0.1 + 2 \times 0.2 + 3 \times 0.125 + 3 \times 0.175 + 2 \times 0.3 = 2.6$

 As we can see, different trees have different expected encoding length

- Let T be a binary (encoding) tree and let T' be the tree obtained by swapping two leaves y and w.
- Then the difference in the B-values is

- Proof:
 - The only difference are the addends corresponding to y and w

$$B(T') - B(T)$$
= $f(y)d_{T'}(y) + f(w)d_{T'}(w) - f(y)d_{T}(y) - f(w)d_{T}(w)$
= $f(y)d_{T}(w) + f(w)d_{T}(y) - f(y)d_{T}(y) - f(w)d_{T}(w)$
= $(f(y) - f(w))(d_{T}(w) - d_{T}(y))$

What does

$$B(T') - B(T) = \Big(f(y) - f(w)\Big) \Big(d_T(w) - d_T(y)\Big)$$
 mean?

• If f(y) > f(w) then y better be up higher in the tree or we can gain by swapping

- Lemma: There exists an optimal tree such that the two lowest-frequency symbols are neighbors
 - Furthermore, they have the highest distance from the root

Proof:

- Let y and w be the two symbols with the lowest frequency
- If there is a tie, take the ones with the biggest depth

- We are going to show that we can transform the tree into a better (or equally good) one where they are neighbors
- Assume that $d_T(w) \ge d_T(y)$

- Assume that there is another leaf z at larger distance than w
 - z has higher frequency and higher distance from root

How does the B-value change?

$$B(T') - B(T) = \left(f(z) - f(w) \right) \left(d_T(w) - d_T(z) \right)$$

$$\geq 0$$

It goes down, i.e. the new tree is better

- We now know that we can have a better or equally good tree where w is a leaf at furthest distance from the root
- Case distinctions based on the sibling of w
 - y and w are siblings
 - w has another sibling
 - w has no sibling

- Case Distinction:
 - Case 1: y and w are siblings
 - We are done, this is what we are supposed to show

- Case 2: w has a sibling z
 - Then $f(z) \ge f(y)$ and $d_T(z) = d_T(w) \ge d_T(y)$

$$B(T') - B(T) = \left(f(y) - f(w)\right) \left(d_T(w) - d_T(y)\right)$$

- Since $f(z) \ge f(y)$ and $d_T(z) = d_T(w) \ge d_T(y)$
- If we swap y and z

$$\quad \bullet \quad B(T') - B(T) = \bigg(f(y) - f(z)\bigg) \bigg(d_T(z) - d_T(y)\bigg) \text{ is zero or negative }$$

• We are lowering the B-value, so we get a better (or equally good) tree

- Case 3:
 - w has no sibling
 - Then we can move w up and get a better tree
 - The only thing that changes is $d_T(w)$, which becomes lower

Move w up to get a better tree

- The "Greedy" property
 - A greedy algorithm is a step-by-step algorithm
 - At each step, make an optimal decision based only on the information in the current step
 - In our case:
 - How do we reduce the problem of finding an optimal tree to a simpler one
 - Already know that the two least frequent symbols are siblings in an optimal tree

- Reduction step:
 - Merge the two least frequent code symbols

- Create a new 'character' yw̄
- Left: alphabet is Σ Right: alphabet is $\Sigma \{y, w\} \cup \{y\overline{w}\}$

- Create a new 'character' yw̄
- Frequency is $f(y\overline{w}) = f(y) + f(w)$

Everything else stays the same

Need to show that this step does not counter optimality.

• Lemma: If the tree T obtained on the alphabet $\Sigma - \{y,w\} + \{y\bar{w}\}$ is optimal, then the tree T' replacing the $y\bar{w}$ node with y and w is also optimal

- Proof:
 - First we calculate the change in the B-values

- Proof:
 - First we calculate the change in the B-values

$$B(T') - B(T) = \sum_{c \in \Sigma'} f_{T'}(c) d_{T'}(c) - \sum_{c \in \Sigma} f_{T}(c) d_{T}(c)$$

Using the definition

- Proof:
 - First we calculate the change in the B-values

$$B(T') - B(T) = \sum_{c \in \Sigma'} f_{T'}(c) d_{T'}(c) - \sum_{c \in \Sigma} f_{T}(c) d_{T}(c)$$

$$= f_{T'}(y\bar{w})d_{T'}(y\bar{w}) - f_{T}(y)d_{T}(y) - f_{T}(w)d_{T}(w)$$

We are summing up mostly over the same elements, so most addends cancel out and this is what it is left

- Proof:
 - First we calculate the change in the B-values

$$B(T') - B(T) = \sum_{c \in \Sigma'} f_{T'}(c) d_{T'}(c) - \sum_{c \in \Sigma} f_{T}(c) d_{T}(c)$$

$$= f_{T'}(y\bar{w})d_{T'}(y\bar{w}) - f_{T}(y)d_{T}(y) - f_{T}(w)d_{T}(w)$$

$$= f_{T'}(y\bar{w})d_{T'}(y\bar{w}) - f_{T}(y)d_{T}(y) - f_{T}(w)d_{T}(y)$$

y and w are siblings and therefore have the same distance from the root

- Proof:
 - First we calculate the change in the B-values

$$\begin{split} B(T') - B(T) &= \sum_{c \in \Sigma'} f_{T'}(c) d_{T'}(c) - \sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\ &= f_{T'}(y\bar{w}) d_{T'}(y\bar{w}) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(w) \\ &= f_{T'}(y\bar{w}) d_{T'}(y\bar{w}) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(y) \\ &= (f_{T}(y) + f_{T}(w)) (d_{T}(y) - 1) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(y) \end{split}$$

The combined node is located at a level one up compared to the single nodes for y and w

- Proof:
 - First we calculate the change in the B-values

$$\begin{split} B(T') - B(T) &= \sum_{c \in \Sigma'} f_{T'}(c) d_{T'}(c) - \sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\ &= f_{T'}(y\bar{w}) d_{T'}(y\bar{w}) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(w) \\ &= f_{T'}(y\bar{w}) d_{T'}(y\bar{w}) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(y) \\ &= (f_{T}(y) + f_{T}(w)) (d_{T}(y) - 1) - f_{T}(y) d_{T}(y) - f_{T}(w) d_{T}(y) \\ &= -f_{T}(y) - f_{T}(w) \end{split}$$

• So, by dividing the node $y\overline{w}$ we have to pay a penalty of f(y) + f(w).

Now, assume that the left tree is optimal and the right tree is not optimal

- Then there exists a tree S that is better the tree with y and w
- We can assume that in this tree, y and w are leave nodes because of the previous lemma

ullet We now do the same merge step for S and T

- The B-value for the tree on the right is the B-value of S minus f(w) + f(y)
- Which is equal or worse than of the tree on the left

- The B-value for the tree on the right is the B-value of S minus f(w) + f(y)
- Which is equal or worse than of the tree on the left
- Which is the B-value of T plus f(w) + f(y)

Thus, S does not have a better B-value

- Huffman's algorithm:
 - If there is only one symbol, create a single node tree
 - Otherwise, select the two most infrequent symbols
 - Combine them with a common ancestor
 - Give the common ancestor the sum of the frequencies
 - Treat the ancestor as a symbol with this frequency
 - Repeat until there is only one symbol

- Example:
 - Absolute frequencies are
 - a 120
 - b 29
 - c 534
 - d 34
 - e − 2549
 - f 321
 - g 45

- Example:
 - Absolute frequencies are
 - a 120, b 29, c 534, d 34, e 2549, f 321, g 45
 - Combine b and d into (bd)

- Example:
 - Absolute frequencies are
 - a 120, b 29, c 534, d 34, e 2549, f 321, g 45
 - Combine b and d into (bd)

• a - 120, c - 534, e -2549, f-321, g - 45, b d 63

$$a - 120$$
, $b - 29$, $c - 534$, $d - 34$, $e - 2549$, $f - 321$, $g - 45$

Example:

- a 120, c 534, e -2549, f-321, g 45, b d 63
- Combine g and b
- a 120, c 534, e 2549, f 321, • 108

$$a - 120$$
, $b - 29$, $c - 534$, $d - 34$, $e - 2549$, $f - 321$, $g - 45$

Example:

• a - 120, c - 534, e - 2549, f - 321, • • - 108

$$a - 120$$
, $b - 29$, $c - 534$, $d - 34$, $e - 2549$, $f - 321$, $g - 45$

Example:

Combine f and

$$a - 120$$
, $b - 29$, $c - 534$, $d - 34$, $e - 2549$, $f - 321$, $g - 45$

- Combine c with the tree
- Then combine with e

```
a - 120, b - 29, c - 534, d - 34, e - 2549, f - 321, g - 45
```

 Result is (e)

B-value needs relative frequencies


```
>>> total = 120+29+534+34+2549+321+45

>>> 29/total*6+34/total*6+45/total*5+120/

total*4+321/total*3+534/total*2+2549/total*1

1.5591960352422907
```

- Notice how much choice we have in building this tree
 - We can switch the order of the trees that we put together
 - For this one, the encoding is

- Try it out yourself
 - a 0.23
 - e 0.35
 - i 0.16
 - 0 0.15
 - u 0.11

- Solution
 - Have a 0.23, e 0.35, i 0.16, o 0.15, u 0.11
 - First combine o and u for 'ou' with frequency 0.26
 - a 0.23
 - e 0.35
 - i 0.16
 - ou -0.26

- Solution
 - Have a 0.23, e 0.35, i 0.16, ou 0.26
 - Combine i and a
 - e 0.35
 - ai 0.39
 - ou 0.26

- Solution
 - Have e 0.35, ai 0.39, ou 0.26
 - Combine ou with e
 - e(ou) 0.61
 - ai 0.39

- Solution
 - Have e(ou) 0.61 ai 0.39
- Combine to get (e(ou)) (ai) with frequency 1.00

- Solution
 - Have (e(ou)) (ai) with frequency 1.00
 - Translate to tree

Solution

- Solution
 - Read off encoding
 - a 10
 - e 01
 - i 11
 - o 000
 - u 001

Solution

Determine B-value from tree

- a 0.23
- e 0.35
- i 0.16
- o 0.15
- u 0.11

3*0.11+3*0.15+2*0.16+2*0.35+2*0.23= 2.260000000000000