
Regular Expressions and
Deterministic Finite

Automata
Thomas Schwarz, SJ

Regular Expressions
and Deterministic Finite Automata
• We want to show that regular expressions are exactly

those recognized by a finite automaton.

• The proof follows a simple scheme

Regular expressions

Non-Deterministic Finite Automata
with ε-moves

Non-Deterministic
Finite Automata

Deterministic Finite
Automata

define languages
recognized by

can be
emulated bycan be

emulated by

recognize languages
given by

Regular Expressions
and Deterministic Finite Automata
• We already have shown that:

• NFAs with -moves can be emulated by NFAs

• NFAs can be emulated by DFAs

ϵ

Regular expressions

Non-Deterministic Finite Automata
with ε-moves

Non-Deterministic
Finite Automata

Deterministic Finite
Automata

define languages
recognized by

can be
emulated bycan be

emulated by

recognize languages
given by

Regular Expressions
and Deterministic Finite Automata
• Left to do:

• Regular expressions define languages recognized by NFA with
moves

• DFA recognize languages given by regular expressions

ϵ

Regular expressions

Non-Deterministic Finite Automata
with ε-moves

Non-Deterministic
Finite Automata

Deterministic Finite
Automata

define languages
recognized by

can be
emulated bycan be

emulated by

recognize languages
given by

Regular expressions and NFAs
with -movesϵ

• Regular expressions are defined recursively

• We need to give a construction for each step

• Base:
Start Start ε

∅ = ∅ ϵ = {ϵ}

Regular expressions and NFAs
with -movesϵ

• Regular expressions are defined recursively

• We need to give a construction for each step

• Base: For a letter α ∈ Σ

Start α

α = {α}

Regular expressions and NFAs
with -movesϵ

• We can always assume that
an automaton has a singular
final state

• By replacing the

automaton by one where:

• The final states are no

longer final

• There is a new final

state

• There are - transition
from the former final
states to the new,
single final state

ϵ

Start

Automaton for L

Start

Automaton for L ε

ε

ε

Regular expressions and NFAs
with -movesϵ

• Union : Get two machines that recognize r and s

• Connect a new start state to the start states of the two machines with an
transition

• Connect all final states with a new, single final state with an transition

r + s
ϵ

ϵ

Start

Automaton for s

Start

Automaton for r

Start Automaton for s

Automaton for r

ε

ε

ε

ε

Regular expressions and NFAs
with -movesϵ

• Concatenation

• Connect the final state of the automaton that recognizes with the
start state of the automaton that recognizes

• Add an transition to a new final state (not really necessary)

r ⋅ s
r

s
ϵ

Start

Automaton for s

Start

Automaton for r

Start

Automaton for r Automaton for s

Automata for rs

ε

Regular expressions and NFAs
with -movesϵ

• Not strictly necessary:

• Add an -transition from the accepting state of to the start state

• We can now transit the automaton several times, but at least one

r+

ϵ r

Start

Automaton for r

Start

Automaton for r

Automata for r+

ε

ε

Regular expressions and NFAs
with -movesϵ

• : Use additional states and transitions that allow you
to bypass the automaton.
r* ϵ

Start

Automaton for r

Automaton for r

Start

ε

ε

Automaton for r*

Examples
• Our recipes add many states and -transitions

• Not necessary to keep them

• There are actually optimization procedures to reduce

the number of states and transitions

ϵ

Examples
• 0* + 01*

Start ε

0

0 1

ε

ε ε

ε

ε

ε

ε

ε

ε

ε

ε

Start

0

ε

ε
ε

0

ε

ε

1

ε

Examples
• (01 + 10)+ = {01,10,0101,0110,1001,1010,010101,…}

Start

0 1

1 0

ε

ε

ε

ε

ε

ε

ε

ε

