Regular Expressions and
Deterministic Finite
Automata

Thomas Schwarz, SJ

Regular Expressions
and Deterministic Finite Automata

* We want to show that regular expressions are exactly
those recognized by a finite automaton.

 The proof follows a simple scheme

Regular expressions

e —~

recognize languages define languages
given by recognized by
Deterministic Finite Non-Deterministic Finite Automata
Automata with e-moves
\ can be
can be emulated by

emulated by /
\

Non-Deterministic
Finite Automata

Regular Expressions
and Deterministic Finite Automata

* We already have shown that:

e NFAs with e-moves can be emulated by NFAs

* NFAs can be emulated by DFAs

Regular expressions

recognize languages define languages
given by recognized by
Deterministic Finite Non-Deterministic Finite Automata
Automata with e-moves
\ can be

can be emulated by

emulated by /
\

Non-Deterministic
Finite Automata

Regular Expressions
and Deterministic Finite Automata

Left to do:

e Regular expressions define languages recognized by NFA with €
moves

* DFA recognize languages given by regular expressions

Regular expressions

recognize languages define languages
given by recognized by
Deterministic Finite Non-Deterministic Finite Automata
Automata with e-moves
\ can be
can be emulated by

emulated by /
\

Non-Deterministic
Finite Automata

Regular expressions and NFAs
with e-moves

 Regular expressions are defined recursively
* We need to give a construction for each step

Regular expressions and NFAs
with e-moves

 Regular expressions are defined recursively
* We need to give a construction for each step

e Base: Foralettera € X

Start —>©— a ->©

a={a}

Regular expressions and NFAs
with e-moves

Automaton for L

* We can always assume that
an automaton has a singular @
Start —-FO

final state @ @

* By replacing the
automaton by one where:

e The final states are no

_ Automaton for L £
longer final , Q/ \
-

e There is a new final Start ——

_ g —P>
state § Q) O/G
e There are € - transition \8

from the former final
states to the new,
single final state

Regular expressions and NFAs
with e-moves

e Unionr + 8: Get two machines that recognize r and s

e Connect a new start state to the start states of the two machines with an ¢
transition

e Connect all final states with a new, single final state with an € transition

Automaton for r

Vs N\
start — () O
\ J
Automaton for s
s N\
start — () O
_ J
| Automaton for r
— ~~ €
€ L J ~
Start —>C>< Automaton for s @
€ () € /
J

Regular expressions and NFAs
with e-moves

e Concatenationr - s

e Connect the final state of the automaton that recognizes r with the
start state of the automaton that recognizes S

e Add an € transition to a new final state (not really necessary)

Automaton for r

4 N\
Start >© @
g J
Automaton for s
4)\
Start —->© @
g J
Automaton for r Automaton for s

SR

Automata for rs

Regular expressions and NFAs
with e-moves

e Not strictly necessary: r*

e Add an e-transition from the accepting state of r to the start state
* \We can now transit the automaton several times, but at least one

Automaton for r

Start %@ O }

—

€
Automaton for r
Start € _»@

Automata for r+

Regular expressions and NFAs
with e-moves

e r*: Use additional states and ¢ transitions that allow you
to bypass the automaton.

Automaton for r

Examples

e Qur recipes add many states and e-transitions
* Not necessary to keep them

* There are actually optimization procedures to reduce
the number of states and transitions

o 0* 4 01%

Examples

(E@\

Examples

e (01 +10)" ={01,10,0101,0110,1001,1010,010101,...}

ﬁ%%
Star —>Q—e->< /Q— —()

€

ot

