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* We want to show that regular expressions are exactly
those recognized by a finite automaton.

 The proof follows a simple scheme

Regular expressions

e —~

recognize languages define languages
given by recognized by
Deterministic Finite Non-Deterministic Finite Automata
Automata with e-moves
\ can be
can be emulated by

emulated by /
\

Non-Deterministic
Finite Automata



Regular Expressions
and Deterministic Finite Automata

* We already have shown that:

e NFAs with e-moves can be emulated by NFAs

* NFAs can be emulated by DFAs
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Regular Expressions
and Deterministic Finite Automata

Left to do:

e Regular expressions define languages recognized by NFA with €
moves

* DFA recognize languages given by regular expressions
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Regular expressions and NFAs
with e-moves

 Regular expressions are defined recursively
* We need to give a construction for each step
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 Regular expressions are defined recursively
* We need to give a construction for each step
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Regular expressions and NFAs
with e-moves

Automaton for L

* We can always assume that
an automaton has a singular @
Start —-FO

final state @ @
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Regular expressions and NFAs
with e-moves

e Unionr + 8: Get two machines that recognize r and s

e Connect a new start state to the start states of the two machines with an ¢
transition

e Connect all final states with a new, single final state with an € transition
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Regular expressions and NFAs
with e-moves

e Concatenationr - s

e Connect the final state of the automaton that recognizes r with the
start state of the automaton that recognizes S

e Add an € transition to a new final state (not really necessary)
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Regular expressions and NFAs
with e-moves

e Not strictly necessary: r*

e Add an e-transition from the accepting state of r to the start state
* \We can now transit the automaton several times, but at least one
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Regular expressions and NFAs
with e-moves

e r*: Use additional states and ¢ transitions that allow you
to bypass the automaton.
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Examples

e Qur recipes add many states and e-transitions
* Not necessary to keep them

* There are actually optimization procedures to reduce
the number of states and transitions
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Examples

e (01 +10)" ={01,10,0101,0110,1001,1010,010101,...}
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