Analysis of Euclidean Algorithm

Algorithms Thomas Schwarz, SJ

- Given two numbers $a, b \in \mathbb{N}$:
 - *a* divides b $a \mid b :\iff \exists x \in \mathbb{N} : b = ax$
 - Divisors are smaller than the dividend

•
$$a \mid b \Longrightarrow a \leq b$$

- *r* is a common divisor of *a* and *b* iff $r \mid a \land r \mid b$
- $gcd(a,b) = max\{r: r \mid a \land r \mid b\}$
 - Always exists because the set is finite
 - Any finite subset of the natural numbers has a maximum

- Lemma 1: For all numbers $a, b \in \mathbb{N}$: gcd(a, b) = gcd(b, a)
- Proof: The set of common divisors does not depend on the order in which a and b are given:
 - $\{r : r \mid a \land r \mid b\} = \{r : r \mid b \land r \mid a\}$ because the logical and operator is commutative

Hence: $gcd(a, b) = max\{r : r \mid a \land r \mid b\}$ = $max\{r : r \mid b \land r \mid a\}$ = gcd(b, a)

- Lemma 2: If $a \in \mathbb{N}$ and $a \mid b$ then gcd(a, b) = a.
- Proof:
 - *a* is the largest divisor of itself.
 - a is also a divisor of b by assumption
 - Hence *a* is the largest element in the set of common divisors $\{r : r \mid a \land r \mid b\}$.
 - This means that

 $a = \max\{r : r \mid a \land r \mid b\} = \gcd(a, b)$

- Lemma 3: If $a \equiv c \pmod{b}$ then gcd(a, b) = gcd(c, b)
- Proof:
 - $a \equiv c \pmod{b} \iff \exists r, s, t \in \mathbb{N}_0 : a = rb + t \land c = sb + t \land 0 \le t < b$
 - We show that $\{r : r \mid a \land r \mid b\} = \{r : r \mid c \land r \mid b\}$
 - Assume that $d \in \mathbb{N}$ is in the left side. We want to show that it is also in the right side. For this we need to show that d also divides c.
 - What do we know: There exists $x, y \in \mathbb{N}_0$ such that
 - b = xd because d divides b
 - a = yd because d divides a
 - $a = rb + t, c = sb + t, 0 \le t < b$

• Proof (continued)

c = c - a + a = ((sb + t) - (rb + t)) + a = (s - r)b + a = (s - r)xd + yd = ((s - r)x + y)d

- Proof: (cont)
 - Now we want to show that all elements on the right side of {r : r | a ∧ r | b} = {r : r | c ∧ r | b} are in the left side.
 - However, since our assumptions are symmetric in a and c, the same proof applies.

- Informal Version:
 - To compute gcd(a, b) put the larger number of a and b on the left
 - Then divide *a* by *b* with remainder *r* (a = bx + r)
 - If r = 0, then $b \mid a$ and gcd(a, b) = b.
 - Otherwise:
 - Notice that $r \equiv a \pmod{b}$.
 - Therefore gcd(a, b) = gcd(r, b) = gcd(b, r) by the Lemma
 - Continue until the remainder becomes 0

- gcd(1043, 4321)
 - $= \gcd(4321, 1043)$
 - $= \gcd(1043, 149)$
 - = 149 because 1043 % 149 = 0.
- There is an interesting extension:
 - 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear combination of 4321 and 1043

gcd(198, 168)

- = gcd(168, 30) 198-168=30
- = gcd(30, 18)
- = gcd(18, 12)
- = gcd(12,6)
- = 6

- 18 = 168 5*30
 = 168 5(198 168) = 6*168 5*198
- 12 = 30 18 = 198-168-6*168+5*198 = 6*198-7*168
- 6 = 18-12 = -5*198+6*168-6*198+7*168 = -11*198 + 13*168
- GCD is a linear combination of the two parameters!

• Pseudo-code

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

- How do we prove the correctness of an algorithm?
 - Especially if it contains a loop
 - Usually, need to use induction
 - Sometimes using a loop invariant

```
gcd(198, 168)
= gcd(168, 30)
= gcd(30, 18)
= gcd(18, 12)
= gcd(12, 6)
= gcd(6, 0)
```

- In this case: gcd(var1,var2) does not change between between calls
- That is Lemma 3!
- End if the algorithm ever ends, it prints out the correct value by Lemma 1.

- How do we prove the correctness of the algorithm?
 - It is possible that an algorithm will never stop
 - (on some inputs, or on all inputs)
 - In our case, the smaller of the variables becomes strictly smaller
 - with the exception of the first step
 - Thus, we will run out of variables for our recursive calls sooner or later
- Algorithm will eventually return the correct number

- Performance
 - Obviously, proportional to the number of recursive calls
 - Given two random inputs:
 - Can stop in one iteration
 - If second variable divides the first
 - Or can stop after many
 - In a case like this: look for the worst case scenario

• Theorem: If gcd(a,b) makes N recursive calls and a > b then $a \ge f_{N+2}$ and $b \ge f_{N+1}$

- Proof:
 - By induction

def gcd(a, b): if b==0: return a else: return gcd(b, a%b)

- **Base case:** N = 1:
 - In this case $b \neq 0$, hence $b \geq 1 = f_1$
 - In this case a > b, so $a > b = 1 \Longrightarrow a \ge 2 = f_2$

- Induction step
 - Induction hypothesis:

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

- If gcd has N recursive calls then $a \geq f_{N+2}$ and $b \geq f_{N+1}$
- To show:
 - If gcd has N+1 recursive calls, then $a \geq f_{N+3}$ and $b \geq f_{N+2}$

- Assume that gcd(a,b) makes N+1 calls.
- The first step calls gcd(b,a%b)
 - This call calls the function recursively N times
 - Thus, by Induction Hypothesis
 - $b \ge f_{N+2}$ and $a \% b \ge f_{N+1}$
 - By division with reminder a = rb + a % b with $0 \le a \% b < b$
 - Because a > b we have $r \ge 1$.
 - Therefore: $a \ge b + a \% b \ge f_{N+2} + f_{N+1} \ge f_{N+3}$.
 - We already know that $b \ge f_{N+2}$

def gcd(a, b): if b==0: return a else: return gcd(b, a%b)

Can find a closed form of Fibonacci

•
$$\Phi = \frac{1 + \sqrt{5}}{2} \approx 1.68$$

def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)

- $b \ge f_{N+2} \ge \Phi^N$
- This implies that $\log_{\Phi}(b) \ge N 1$ and $N = O(\log b)$

- Recursion usually demands induction proofs to assert properties of an algorithm
- For loops, use loop invariant:
 - A property that is true before the loop starts
 - A property that remains true after each loop iteration
 - And is therefore true after the loop terminates

- Working with loop invariants:
 - Need to come up with a loop invariant
 - Prove that it is true before the loop starts (induction base)
 - Prove that it remains true after each iteration of the loop

- Trivial Example:
 - Small C-program

```
extern int c;
int x = c, y = 0;
while (x>=0):
    x--;
    y++;
print(y)
```

• Step 1: Guessing a loop invariant

```
extern int c;
int x = c, y = 0;
while (x>=0):
    x--;
    y++;
print(y)
```

- Needs to involve x, y, c
 - x + y = c

- Step 2:
 - Show that it is true before the loop starts
 - Simple: before the loop starts, we have x = c, y = 0therefore x + y = c

- Step 3: Show that the truth does not change after one iteration
 - Induction step: Assume $x_b + y_b = c$ before the loop iteration
 - After the iteration, we have $x_a = x_b 1$, $y_a = y_b + 1$.
 - This implies
 - $x_a + y_a = (x_b 1) + (y_b + 1) = x_b + y_b 1 + 1 = x_b + y_b = c$

- Step 4: Evaluate with the loop invariant
 - When the loop is terminated, x = 0.
 - (Question: why do we now that the loop terminates?)

• Therefore, the value of y is

$$y = x + y - x = c - 0 = c$$

• Thus, the function prints out the value of *c*.