Divide and Conquer

Algorithms



Divide and Conquer

e (Generic recipe for many solutions:

e Divide the problem into two or more smaller instances
of the same problem

e Conquer the smaller instances using recursion (or a
base case)

e Combine the answers to solve the original problem



Integer Multiplication

* Assume we want to multiply two n-bit integers with n a

power of two

 Divide: break the integers into two n/2-bit integers

n
X =22x; + xp

y =22y, + yg

XL

XR

YL

YR




Integer Multiplication

e Conquer: Solve the problem of multiplying of n/2 bit
integers by recursion or a base case for n=1, n=2, or
n=4

n
X = 22XL + XR XL XR

y =22y, + yg " "

XY, XL YR ARYL AR JVR



Integer Multiplication

¢ Now combine:

e |n the naive way:

x')’:(XL‘2%+XR)‘(YL'2%+YR)

=XL°yL°2n+(xL°yR+XR°yL)°2%+XR°yR



Integer Multiplication

Xy = (XLZ% + Xg) - ()’Lz% + Yr)

= xp -y 2"+ (- Vg XR°yL)°2% AR * VR
e We count the number of multiplications

e Multiplying by powers of 2 is just shifting, so they do
not count

e T(n) number of bit multiplications for integers with 2"
bits:
T(0) = 1

e Recursion: T(n + 1) = 4T(n)



Integer Multiplication

e Solving the recursion 70) =1
T(n+1)=4T(n)

e |ntuition:

T(n) =4T(n—1)=4Tn—2) =4Tn—3) = ... = 4"T(0) = 4"



Integer Multiplication

* Proposition: T(n) =4"
* Proof by induction:
* |nduction base:
T(0)=1=4"
e Induction step: Assume T(n) =4""!. Show T(n+1)=4"

* Proof:
T(n) = 4T (n — 1) Recursion Equation
= 4 x 4" Induction Assumption
— 4"



Integer Multiplication

e Since the number of bits is ; = 2"

e Number of multiplications is
S(m) = T(n) = 4" = 2")" = m?

e This is not better than normal multiplication



Integer Multiplication

¢ Now combine:

e Instead: x.-y= (xLZ% + Xp) - (yLﬁ + Vp)
=XL')’L’2H+(XL'YR+XR'YL)'2%+XR°yR

e Use (- -yp+xp-y) = +xp) - Qp+Yp)— X Y. —Xp" Vg

e This reuses two multiplications that are already used



Integer Multiplication

e \We need to deal with the potential overflow in calculating

(x; + xg) - (Y + V)



Integer Multiplication

e Now, we only do three multiplications of 2" bit numbers in
order to multiply two 2"*! bit numbers

e The recursion becomes

10)=1 Tmn+1)=3T(n)




Integer Multiplication

e Solvingtherecurrence 7T(0) =1 Tn+1)=3T(n)

e Heuristics:

Tn)=3Tn—1)=3°Tn-2) = ... = 3"T(0) = 3"



Integer Multiplication

e As before prove exactly using induction



Integer Multiplication

e The multiplication of two m = 2" -bit numbers takes
Sim) = T(n)
— 3n
_ 310g2(m)
= exp(log(3'2(")))

= exp(log, mlog3)
1
log?2

)

= exp(logm]log 3

— e:sqp(log(mlog2 3)
_ m10g2 3



Integer Multiplication

* This way, multiplication of m-bit numbers takes m 128490

bit multiplications



Integer Multiplication

e Can be used for arbitrary length integer multiplication

o Base case is 32 or 64 bits

e But can still do better using Fast Fourier Transformation



Binary Search

e Given an array of ordered integers, a pointer to the
beginning and to the end of a portion of the array, decide
whether an element is in the slice

¢ Search(array, beg, end, element)

array

beg
end




Binary Search

e Divide: Determine the middle element. This divides the
array into two subsets

e Conquer: Compare the element with the middle element.
If it iIs smaller, find out whether the element is in the left
half, otherwise, whether the element is in the right half

e Combine: Just return the answer to the one question



Binary Search

def binary search(array, beg, end, key):
1f beg >= end:
return False
mid = (beg+end)//2
1f array[mid]==key:
return True
elif array[mid] > key:
return binary search(array, beg, mid, key)
else:

return binary search(array, mid+l, end, key)

test = [2, 3, 5, o, 12, 15, 17, 19, 21, 23, 27, 29,
31, 33, 35, 39, 41]

print (binary search(test, 0, len(test), 21))

print (binary search(test, 0, len(test), 22))



Binary Search

e Let T(n) be the runtime of binary_search on a subarray
with n elements

e Recursion: There is a constant ¢ such that

(1) <c
T(n) <Tnll2)+c



Binary Search

e Solving the recursion

Itn) < T(n//2)+c
< T(n//4)+ 2c
< T(n//Qm) + mc

e If m>log,n then T(n) <T(1)+mc=m+ 1)



Binary Search

* With other words, binary search on n elements takes time

x log,(n)



Strassen Multiplication

e Definition of Matrix Multiplication

n
c@zizn Bz = (Qabozizy
J=1
) !
!
!
A c | i
row i+ —> = SR - L 1Trow
B . | j column
|

v
column j




Strassen Multiplication

o (Cost of definition:

e n? multiplications for all mk elements in the product

e Square n X n matrices: n* elements



Strassen Multiplication

e Divide and conquer: Assume n = 2" is a power of two.
* We can use the following theorem:

e Break each matrix into four submatrices of size
271 % 21 and calculate

<A11 A12> . (Bll B12> _ (AllBll LA A12B21 A11B21 LA A12B22>

A21 A22 B21 B22 A21B11 A22B21 A21B21 A22B22




Strassen Multiplication

As Is, a divide and conquer algorithm gives us 8
multiplication of matrices half the size.

Let m(n) be the number of multiplications needed to
multiply two 2" X 2" matrices using divide and conquer

Obviously: m(1) =1

Recursion: m(n + 1) = 8m(n)



Strassen Multiplication

e Claim: m(n) = 2°"
e Proof: Induction base: m(0) =1 = 23
* Induction step:

e Hypothesis: m(n) = 2"

e To show: m(n+ 1) = 2’0+

e Proof:

m(n+ 1) = 8m(n) = 8§ - 23" =23 .23 = 23n+3 = 3+



Strassen Multiplication



Strassen Multiplication

* Strassen: Can use 7 matrix multiplications to calculate all eight
products

o M, :=(A; +A)B; +B,))
e M, =(A,; +A,)B
o M; :=A (B, B,))
o M, :=Ay,(B,; =B )
o M5 :=(A;+A,)B,,
o Mg:=(Ay; —A DB +B))
o My = (A, —A)B,; +B,))



Strassen Multiplication

Then can get all the submatrices on the right:
C1,1 =M, +M, -M;+ M,

C,=M; + Mq

G =M, +M,

C2,2=M1 - M, +M;+ M,



Strassen Multiplication

e Now the recurrence becomes
e m(n+1)="Tm(n), mO) =1
e which is obviously solved by

e m(n) ="17".



Strassen Multiplication

e Remember that the size of the matrix was 2" X 2.

e Thus, if M(n) is the number of multiplications for an n X n
matrix with power of 2 rows, then

e M(n) = m(log,(n)) = 7'°%"
* Since

log, (798 = log,(n)log,(7) = log,(7)log,(n) = log,(n'°&")
- M(n) = n1082(7) ~y 5,2.80735



Strassen Multiplication

 The algorithm can be extended for matrices that

e have number of rows = number of columns not a power
of 2

e are not square



