
Homework 1:
due September 4, 2020

Individual contributions only, submit via D2L, only typeset solutions in pdf-format are accepted

In this homework, we evaluate the performance of a recursive version of Fibonacci that

The following Python code calculates recursively the Fibonacci numbers, defined by

 .

def rec_fib(n):
 if n < 2:
 return n
 else:
 return rec_fib(n-1)+rec_fib(n-2)

If you implement this code and run it, you will find that for even moderately large arguments ,
this implementation will take too long. On my machine, I can barely calculate rec_fib(35),
and the situation does not become much better if I use C++ instead of Python. The reason is
that for each increment of , I have two recursive calls, which often create additional recursive
calls. In fact, we will show that the number of recursive calls increases very much like the
Fibonacci sequence itself.

If the argument is 0 or 1, there is no recursive call. If the argument is 2, then there are
recursive calls with arguments 0 and 1 and no further calls. If the argument is 3, then there will
be recursive calls with arguments 2 and 1, the former creating 2 more recursive calls. Thus, we
have

Develop a recurrence relation for the number of recursive calls . Then prove by induction
that for .

fn =
0 for n = 0
1 for n = 1
fn−1 + fn−2 for n ≥ 2

n

n

n

Argument

0

1

2

3 r3 = r2 + r1 + 2 = 4

Recursive Calls rn

r0 = 0

r2 = 2

r1 = 0

rn
rn = − 2 + fn−1 + fn + fn+1 n > 1

