
Analysis of Euclidean
Algorithm

Algorithms

Thomas Schwarz, SJ

Greatest Common Divisor
• Given two numbers :

• divides

• Divisors are smaller than the dividend

•

• is a common divisor of and iff

•

• Always exists because the set is finite

• Any finite subset of the natural numbers has a maximum

a, b ∈ ℕ

a b a ∣ b :⟺ ∃x ∈ ℕ : b = ax

a ∣ b ⟹ a ≤ b

r a b r ∣ a ∧ r ∣ b

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

Greatest Common Divisor
• Lemma 1: For all numbers :

• Proof: The set of common divisors does not depend on the
order in which a and b are given:

• because the
logical and operator is commutative

Hence:

a, b ∈ ℕ
gcd(a, b) = gcd(b, a)

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ b ∧ r ∣ a}

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

= max{r : r ∣ b ∧ r ∣ a}

= gcd(b, a)

Greatest Common Divisor
• Lemma 2: If and then .

• Proof:

• is the largest divisor of itself.

• is also a divisor of by assumption

• Hence is the largest element in the set of common
divisors .

• This means that

a ∈ ℕ a ∣ b gcd(a, b) = a

a

a b

a
{r : r ∣ a ∧ r ∣ b}

a = max{r : r ∣ a ∧ r ∣ b} = gcd(a, b)

Greatest Common Divisor
• Lemma 3: If then

• Proof:

•

• We show that

• Assume that is in the left side. We want to show that it is also in
the right side. For this we need to show that also divides c.

• What do we know: There exists such that

• because divides

• because divides

•

a ≡ c (mod b) gcd(a, b) = gcd(c, b)

a ≡ c (mod b) ⟺ ∃r, s, t ∈ ℕ0 : a = rb + t ∧ c = sb + t ∧ 0 ≤ t < b

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

d ∈ ℕ
d

x, y ∈ ℕ0

b = xd d b

a = yd d a

a = rb + t, c = sb + t,0 ≤ t < b

Greatest Common Divisor
• Proof (continued)

• c = c� a+ a

= ((sb+ t)� (rb+ t)) + a

= (s� r)b+ a

= (s� r)xd+ yd

= ((s� r)x+ y)d

<latexit sha1_base64="b9Xg+Gw8lpuU4qZbUwSD4rwtZhA=">AAACRnicbZBLSwMxFIXv1Fetr6pLN8FiaSktM1LQjVB047KCfUA7lEwmbYOZB0lGHEp/nRvX7vwJblwo4tZMW7S2Xgg5+c69JDlOyJlUpvlipFZW19Y30puZre2d3b3s/kFTBpEgtEECHoi2gyXlzKcNxRSn7VBQ7Dmctpy7q8Rv3VMhWeDfqjiktocHPuszgpVGvaxNUP4ij0gZoxLCqNvN6GOhIJ2SKpYLItmKqPRjyLIoOvOdCXhwNYnd3+GEleIicnvZnFkxJ4WWhTUTOZhVvZd97roBiTzqK8KxlB3LDJU9wkIxwuk4040kDTG5wwPa0dLHHpX2aBLDGJ1o4qJ+IPTyFZrQ+YkR9qSMPUd3elgN5aKXwP+8TqT65/aI+WGkqE+mF/UjjlSAkkyRywQlisdaYCKYfisiQywwUTr5jA7BWvzysmieVqxqpXpTzdUuZ3Gk4QiOoQAWnEENrqEODSDwCK/wDh/Gk/FmfBpf09aUMZs5hD+Vgm93B6YJ</latexit>

Greatest Common Divisor
• Proof: (cont)

• Now we want to show that all elements on the right
side of are in
the left side.

• However, since our assumptions are symmetric in
and , the same proof applies.

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

a
c

Euclidean Algorithm
• Informal Version:

• To compute put the larger number of and on the left

• Then divide by with remainder ()

• If , then and .

• Otherwise:

• Notice that .

• Therefore by the Lemma

• Continue until the remainder becomes 0

gcd(a, b) a b

a b r a = bx + r

r = 0 b ∣ a gcd(a, b) = b

r ≡ a (mod b)

gcd(a, b) = gcd(r, b) = gcd(b, r)

Euclidean Algorithm
• gcd(1043, 4321)

• = gcd(4321, 1043)

• = gcd(1043, 149)

• = 149 because 1043 % 149 = 0.

• There is an interesting extension:

• 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear
combination of 4321 and 1043

Euclidean Algorithm
gcd(198, 168)

= gcd(168, 30)

= gcd(30, 18)

= gcd(18,12)

= gcd(12,6)

= 6

• 198-168=30

• 18 =168 - 5*30
=168-5(198-168)=6*168-5*198

• 12 = 30 - 18 = 198-168-6*168+5*198 =
6*198-7*168

• 6 = 18-12 = -5*198+6*168-6*198+7*168 =
-11*198 + 13*168

• GCD is a linear combination of the two
parameters!

Euclidean Algorithm
• Pseudo-code

def gcd(a, b):

 if b==0:

 return a

 else:

 return gcd(b, a%b)

Euclidean Algorithm
• How do we prove the correctness of an algorithm?

• Especially if it contains a loop

• Usually, need to use induction

• Sometimes using a loop invariant

• In this case: gcd(var1,var2) does not change
between between calls

• That is Lemma 3!

• End if the algorithm ever ends, it prints out the
correct value by Lemma 1.

gcd(198, 168)

= gcd(168, 30)

= gcd(30, 18)

= gcd(18,12)

= gcd(12,6)

= gcd(6,0)

Euclidean Algorithm
• How do we prove the correctness of the algorithm?

• It is possible that an algorithm will never stop

• (on some inputs, or on all inputs)

• In our case, the smaller of the variables becomes
strictly smaller

• with the exception of the first step

• Thus, we will run out of variables for our recursive calls
sooner or later

• Algorithm will eventually return the correct number

Euclidean Algorithm
• Performance

• Obviously, proportional to the number of recursive calls

• Given two random inputs:

• Can stop in one iteration

• If second variable divides the first

• Or can stop after many

• In a case like this: look for the worst case scenario

Euclidean Algorithm
• Theorem: If gcd(a,b) makes N recursive calls and a > b

then and a ≥ fN+2 b ≥ fN+1

Euclidean Algorithm
• Proof:

• By induction

• Base case: :

• In this case , hence

• In this case , so

N = 1

b ≠ 0 b ≥ 1 = f1
a > b a > b = 1 ⟹ a ≥ 2 = f2

def gcd(a, b):

 if b==0:

 return a

 else:

 return gcd(b, a%b)

Euclidean Algorithm
• Induction step

• Induction hypothesis:

• If gcd has recursive calls then and

• To show:

• If gcd has recursive calls, then
and

N a ≥ fN+2
b ≥ fN+1

N + 1 a ≥ fN+3
b ≥ fN+2

def gcd(a, b):

 if b==0:

 return a

 else:

 return gcd(b, a%b)

Euclidean Algorithm
• Assume that gcd(a,b) makes N+1 calls.

• The first step calls gcd(b,a%b)

• This call calls the function recursively N times

• Thus, by Induction Hypothesis

• and

• By division with reminder with

• Because we have .

• Therefore: .

• We already know that

b ≥ fN+2 a % b ≥ fN+1

a = rb + a % b 0 ≤ a % b < b

a > b r ≥ 1

a ≥ b + a % b ≥ fN+2 + fN+1 ≥ fN+3

b ≥ fN+2

def gcd(a, b):

 if b==0:

 return a

 else:

 return gcd(b, a%b)

Euclidean Algorithm
• Can find a closed form of Fibonacci

•

•

• This implies that and

Φ =
1 + 5

2
≈ 1.68

b ≥ fN+2 ≥ ΦN

logΦ(b) ≥ N − 1 N = O(log b)

def gcd(a, b):

 if b==0:

 return a

 else:

 return gcd(b, a%b)

Loop Invariants
• Recursion usually demands induction proofs to assert

properties of an algorithm

• For loops, use loop invariant:

• A property that is true before the loop starts

• A property that remains true after each loop iteration

• And is therefore true after the loop terminates

Loop Invariants
• Working with loop invariants:

• Need to come up with a loop invariant

• Prove that it is true before the loop starts (induction
base)

• Prove that it remains true after each iteration of the
loop

Loop Invariants
• Trivial Example:

• Small C-program

extern int c;

int x = c, y = 0;

while (x>=0):

 x--;

 y++;

print(y)

Loop Invariants
• Step 1: Guessing a loop invariant

• Needs to involve x, y, c

• x + y = c

extern int c;

int x = c, y = 0;

while (x>=0):

 x--;

 y++;

print(y)

Loop Invariants
• Step 2:

• Show that it is true before the loop starts

• Simple: before the loop starts, we have
therefore

x = c, y = 0
x + y = c

Loop Invariants
• Step 3: Show that the truth does not change after one

iteration

• Induction step: Assume before the loop
iteration

• After the iteration, we have , .

• This implies

•

xb + yb = c

xa = xb − 1 ya = yb + 1

xa + ya = (xb − 1) + (yb + 1) = xb + yb − 1 + 1 = xb + yb = c

Loop Invariants
• Step 4: Evaluate with the loop invariant

• When the loop is terminated, .

• (Question: why do we now that the loop terminates?)

• Therefore, the value of is

• Thus, the function prints out the value of .

x = 0

y
y = x + y − x = c − 0 = c

c

Examples

Bubble Sort
Thomas Schwarz, SJ

Bubble Sort
• Idea of bubble sort:

• Repeatedly swap adjacent elements in an array until
they are in order

• Reminder: Swaps in Python are easy:

• arr[i],arr[i+1] = arr[i+1],arr[i]

• while not done:

for i in range(len(arr)-1):

 if arr[i] > arr[i+1]:

 arr[i],arr[i+1]=arr[i+1],arr[i]

Bubble Sort
• Example: Sort

• First pass: Check first pair

• Swap and move on

• No swap necessary, move on

6 35 1 024

6 35 1 024

6 35 1 02 4

6 35 1 02 4

Bubble Sort
• Example:

• Swap and move on

•

• Swap and move on

•

• Swap and move on

•

6 35 1 02 4

635 1 02 4

635 1 02 4

Bubble Sort
• Example:

• Swap and move on

•

• Array is still not sorted, so we need to continue

• However: Notice that the maximum element has been
picked up and is now at the correct position

• We only have to order the first positions

635 1 02 4

n − 1

Bubble Sort
• Example

• Second pass:

•

•

•

635 1 02 4

635 1 02 4

63 5 1 02 4

Bubble Sort
• Example (Second Pass):

•

•

• The maximum in the remaining array has now reached its
correct point

•

63 51 02 4

63 51 02 4

63 51 02 4

Bubble Sort
• Example: Third Pass

•

•

•

•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

•

• Third largest element
has bubbled up to the
correct place

•

63 51 02 4

63 51 02 4

Bubble Sort
• Fourth pass

•

•

•

•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

• Now 3 has bubbled up

•
63 51 02 4

Bubble Sort
• Fifth Pass

•

•

•

• 2 has bubbled up

•

63 51 02 4

63 51 02 4

63 51 0 2 4

63 51 0 2 4

• Final Pass

•

•

• 1 has bubbled up, and a
singleton is always sorted:

•

63 51 0 2 4

63 510 2 4

63 510 2 4

Bubble Sort
• We need one less pass than there are array elements

• And we do not need to look at the last elements of the
array

def bubblesort(arr):

 n = len(arr)

 for i in range(n-1):

 for j in range(n-i-1):

 if arr[j] > arr[j+1]:

 arr[j],arr[j+1]=arr[j+1],arr[j]

Bubble Sort
• Potential improvements:

• After each pass, the elements after the last swap are
already in order

• We can skip the corresponding passes

• But need to keep track of the last swap

Bubble Sort
• Performance:

• At pass , we compare
values

• This means, we make

•

comparisons

i, i = 0,1,…, n − 2 n − i − 1

(n − 1) + (n − 2) + … + 2 + 1 =
n(n − 1)

2

Bubble Sort
• If we use the last swap trick:

• Best case behavior: The array is sorted, we did not do
any swap, and we are done after a single pass with

 comparisonsn − 1

Bubble Sort
• Bubble sort is known to be the least efficient sort for data

that is not already sorted

• Among the sorting algorithms that do not try to be
horrible

Bubble Sort Invariant
• Loop Invariant:

• After execution of outer loop with value i

• arr[n-i-1:n] contains the i+1 maximal values in
ascending order

def bubblesort(arr):

 n = len(arr)

 for i in range(n-1):

 for j in range(n-i-1):

 if arr[j] > arr[j+1]:

 arr[j],arr[j+1]=arr[j+1],arr[j]

Bubble Sort Invariant
• After execution of outer loop with value i

• arr[n-i-1:n] contains the i+1 maximal values in
ascending order

• Follows from:

• The inner loop selects the maximum element in
arr[0:n-i] and moves it to arr[n-i-1]

def bubblesort(arr):

 n = len(arr)

 for i in range(n-1):

 for j in range(n-i-1):

 if arr[j] > arr[j+1]:

 arr[j],arr[j+1]=arr[j+1],arr[j]

Insertion Sort
Thomas Schwarz, SJ

Insertion Sort
• Idea:

• Break the array into a sorted and an unsorted part

• Move first element of the unsorted part into the
correct position in the sorted array

Insertion Sort
• Example:

• Sort

• Reddish part is unsorted: initially whole array

• Greenish part is sorted: initially empty

6 35 1 024

Insertion Sort
• Example:

•

• First element in the red part is 4:

• Insert 4 into the green part

•

6 35 1 024

6 35 1 024

Insertion Sort
• Example

•

• Next unsorted element is 2

• Compare with 4

• Insert in front of 4

•

6 35 1 024

6 35 1 02 4

Insertion Sort
• Example

•

• Next unsorted element is 6

• Compare with 2, then 4

• Insert after 4

•

6 35 1 02 4

6 35 1 02 4

Insertion Sort
• Example

•

• Next unsorted element is 5

• Compare with 2, 4, 6

• Insert before 6

•

6 35 1 02 4

6 35 1 02 4

Insertion Sort
• Example

•

• Next unsorted element is 3

• Compare with 2, then 4

• Insert before 4

•

6 35 1 02 4

63 5 1 02 4

Insertion Sort
• Example

•

• Next comes 1

• Compare with 2

• Insert before 2

•

63 5 1 02 4

63 51 02 4

Insertion Sort
• Example

•

• Final unsorted element is 0

• Compare with 1

• Insert before 1

•

• We are done

63 51 02 4

63 510 2 4

Insertion Sort
• Performance:

• Inserting at a specific index in an array means moving the
elements after the insertion

• This is a big hidden cost

• Inserting at a specific index into a linked list only involves
finding the insertion point and constant link resetting work

• However, we can now avoid comparisons

• To insert into a sorted array of length

• only need on average comparisons

i
i
2

+ 1

Insertion Sort
• Average case:

• Pass has comparisons

• Total of comparisons

i 1 +
i
2

n−1

∑
i=0

(1 +
i
2

) = n +
1
2

n(n − 1)
2

Insertion Sort
• Best Case:

• Only one comparison per pass:

• New element inserted into the
sorted part is smaller than the
current minimum of the part

• Original array is ordered from
maximum to minimum

6 35 1 024

6 35 1 024

6 35 1 024

6 35 1 024

63 5 1 024

Insertion Sort Invariant
• After each step, the green array is correctly sorted

• After each step, the multi-set of elements has not
changed

