Analysis of Euclidean
Algorithm

Algorithms
Thomas Schwarz, SJ

Greatest Common Divisor

e Given two numbers a,b € N:
e adividesb al|b:—= dxeN: b=ax
* Divisors are smaller than the dividend
ca|lb=a<b
e risacommondivisorofaand biff r|aAr|b
e gcd(a,b) =max{r:r|aAnr| b}
e Always exists because the set is finite

* Any finite subset of the natural numbers has a maximum

Greatest Common Divisor

e Lemma 1: Forall numbers a,b € N:
gcd(a, b) = ged(b, a)

* Proof: The set of common divisors does not depend on the
order in which a and b are given:

e {r:r|lanr|b}={r:r|bAr| a} because the
logical and operator is commutative

Hence: gcd(a,b) = max{r:r|aAr| b}
=max{r:r|bAr]|a}

= gecd(b, a)

Greatest Common Divisor

e Lemma?2: Ifa € Nanda | b then gcd(a, b) = a.

* Proof:
e ais the largest divisor of itself.
e ais also a divisor of b by assumption

e Hence a is the largest element in the set of common
divisors {r:r|laAnr|b}.

e This means that
a=max{r:r|aAr| b} =gcd(a,b)

Greatest Common Divisor

e Lemma3:If a =c (mod b) then gcd(a, b) = gecd(c, b)

e Proof:
ea=c (mod b)) = dr,s,teNy:a=rb+tAc=sb+tAN0L1t<Db
e Weshowthat{r:r|aAr|b}={r:r|cAr|b}

e Assume that d € N is in the left side. We want to show that it is also in
the right side. For this we need to show that d also divides c.

e What do we know: There exists x, y € N, such that
e b=xd because d divides b
e a=yd because d divides a

e a=rb+t,c=sb+1t,0<t<b

Greatest Common Divisor

* Proof (continued)
C = C—a-+a
= ((sb+t)— (rb+1)) +a
— (s —r)b+a
— (s —r)zd + yd
= (s —r)xr+y)d

Greatest Common Divisor

* Proof: (cont)

* Now we want to show that all elements on the right
sideof {r:r|laAr|b}={r:r|cAr|b}arein
the left side.

e However, since our assumptions are symmetric in a
and ¢, the same proof applies.

Euclidean Algorithm

* |nformal Version:
e To compute gcd(a, b) put the larger number of a and b on the left

e Then divide a by b with remainder r (a = bx + 1)

e Ifr=0,then b | aandgcd(a,b) =0>b.
e Otherwise:
e Noticethatr =a (mod b).
e Therefore gcd(a, b) = gcd(r, b) = gcd(b, r) by the Lemma

e Continue until the remainder becomes 0

Euclidean Algorithm

e gcd(1043, 4321)

e = gcd(4321, 1043)

e =gcd(1043, 149)

e =149 because 1043 % 149 = 0.
* There is an interesting extension:

e 4321=4"1043+149, ergo 149 = 4321-4*1043, a linear
combination of 4321 and 1043

Euclidean Algorithm

gcd(198, 168)

- gcd(168, 30)

= gcd

30, 18)

= gcd(18,12)

:gC
=6

(
(
(
d(

12,6)

198-168=30

18 =168 - 5*30
=168-5(198-168)=6"168-5"198

12=30-18 = 198-168-6"168+5"198 =
6°198-7"168

6 = 18-12 = -5*198+6*168-6"198+7*168 =
-11*198 + 13*168

GCD is a linear combination of the two
parameters!

Euclidean Algorithm

e Pseudo-code

det gcd(a, b):
1f b==0:
return a
else:
return gcd (b, asb)

Euclidean Algorithm

e How do we prove the correctness of an algorithm?
e Especially if it contains a loop
e Usually, need to use induction

e Sometimes using a loop invariant

S eaiies. 30, ® Inthis case: gcd(vari,var2) does not change

gcd (30, 18) between between calls
gcd (18,12)
(
(6

gcd (12, 6) .
= gcd (6,0) e That is Lemma 3!

 End if the algorithm ever ends, it prints out the
correct value by Lemma 1.

Euclidean Algorithm

* How do we prove the correctness of the algorithm?
* |t is possible that an algorithm will never stop
e (on some inputs, or on all inputs)

* |n our case, the smaller of the variables becomes
strictly smaller

e with the exception of the first step

e Thus, we will run out of variables for our recursive calls
sooner or later

e Algorithm will eventually return the correct number

Euclidean Algorithm

 Performance
e Obviously, proportional to the number of recursive calls
e (Given two random inputs:
e Can stop in one iteration
e |f second variable divides the first
e QOr can stop after many

e |n a case like this: look for the worst case scenario

Euclidean Algorithm

* Theorem: If gcd(a,b) makes N recursive callsanda >Db
thena 2 fy,p,and b 2 fy,

Euclidean Algorithm

def gcd(a, b):
e Proof: L1E b==0:

return a

e By induction else:
return gcd (b, a%b)

e Base case: N = 1:

e Inthiscase b # 0,hence b > 1 = f,

e Inthiscasea > b,soa>b=1=a>2 =},

Euclidean Algorlthm

e |nduction step

* |nduction hypothesis:

def gcd(a,
1if b==O
return a
else:
return gcd (b, asb)

o If gcd has N recursive calls then a > fy,, and

e If gcd has N + 1 recursive calls, then a > fy. 3

and b > fy,»

Euclidean Algorlthm

def gcd(a,
1f b=
return a

* The first step calls gcd(b,a%b) =ses t d (b o)
return gc y Ao

 Assume that gcd(a,b) makes N+1 calls.

* This call calls the function recursively N times

* Thus, by Induction Hypothesis

e b>fy,anda%b > fy.,

e By division with remindera =rb+a% bwithO <a%b < b

e Becausea > b we haver > 1.

o Therefore:a > b+ a%b > fy,» + fyi1 = fyss-

» We already know that b > fy.

Euclidean Algorlthm

def gcd(a, b)
_ 1f b==0:
e Can find a closed form of Fibonacci return a
else:
1 *‘\/Qg return gcd (b, a%b)
o — ~ 1.68
2

e This implies that log4(b) > N — 1 and N = O(log b)

Loop Invariants

* Recursion usually demands induction proofs to assert
properties of an algorithm

 For loops, use loop invariant:
* A property that is true before the loop starts
* A property that remains true after each loop iteration

 And is therefore true after the loop terminates

Loop Invariants

 Working with loop invariants:
* Need to come up with a loop invariant

e Prove that it is true before the loop starts (induction
base)

e Prove that it remains true after each iteration of the
loop

Loop Invariants

e Trivial Example:

e Small C-program

extern int c;
int x = ¢, y = 0;
while (x>=0) :
X==;
y++;
print (y)

Loop Invariants

e Step 1: Guessing a loop invariant

extern int c;
int x = ¢, yv = 0;
while (x>=0):
X==;
y++;
print (y)

* Needs toinvolve x, y, C

e xX+y=c

Loop Invariants

e Step 2:
e Show that it is true before the loop starts

e Simple: before the loop starts, we have x = ¢,y = 0
thereforex +y = ¢

Loop Invariants

e Step 3: Show that the truth does not change after one
iteration

e Induction step: Assume x;, + y, = ¢ before the loop
iteration

o After the iteration, we havex, = x, — 1,y, =y, + 1.
 This implies

e X, +y, =0 -D+O,+D)=x+y,—-1+1=x,+y,=c

Loop Invariants

e Step 4: Evaluate with the loop invariant

e When the loop is terminated, x = 0.

e (Question: why do we now that the loop terminates?)

e Therefore, the value of y is
y=x+y—x=c—-—0=c¢

 Thus, the function prints out the value of c.

Examples

Bubble Sort

Thomas Schwarz, SJ

Bubble Sort

e |dea of bubble sort:

» Repeatedly swap adjacent elements in an array until
they are in order

e Reminder: Swaps in Python are easy:
® arr|[1],arr[1+1l] = arr[i+l],arr[1]
® while not done:
for 1 1n range(len(arr)-1):

1f arr[i1] > arr[i+1]:
arr[1],arr[i+]l]=arr[1+1l],arr[1]

Bubble Sort

e Example: Sort B - s DEE
* First pass: Check first pair
/ \

e Swap and move on

3|10

e No SWap necessary, move on

3|10

Bubble Sort

e Example:

e Swap and move on

/N

e Swap and move on

/ \
. IS o
e Swap and move on

/N

Bubble Sort

e Example:
e Swap and move on

. (IS N

* Array is still not sorted, so we need to continue

e However: Notice that the maximum element has been
picked up and is now at the correct position

e We only have to order the first n — 1 positions

Bubble Sort

e Example

[o o
@D
N N N O
O
>
O
U
Q
— — — m

Bubble Sort

e Example (Second Pass):

/ O\
23 1 5“6
o
23 1] 0

* The maximum in the remaining array has now reached its
correct point

2310

H

Bubble Sort

e Example: Third Pass

-
o

e Third largest element

has bubbled up to the
correct place

Bubble Sort

 Fourth pass e Now 3 has bubbled up

/ \
2.1 0

BT

o

o

B~ S~
&) 6))
(0)) ()]

Bubble Sort

e Fifth Pass e Final Pass
T e &
2| 1]0 1102 5 ¢
® ®
/ N\
11210 4 5 6 of 1 2
® °®
1] o2 S 1 has bubbled up, and a

singleton is always sorted:
e 2 has bubbled up

o012 s 6

Bubble Sort

* We need one less pass than there are array elements

e And we do not need to look at the last elements of the
array

def bubblesort (arr) :
n = len(arr)
for 1 1n range(n-1):
for 7 1n range(n-i-1):
if arr[]j] > arr[j+1]:
arr[j],arr[j+l]l=arr[j+1],arr[]]

Bubble Sort

e Potential improvements:

o After each pass, the elements after the last swap are
already in order

 We can skip the corresponding passes

e But need to keep track of the last swap

Bubble Sort

e Performance:

e Atpassi,i=0,1,....,n—2, wecomparen —i— 1
values

e This means, we make
nn—1)

=D+ =D+ ...+2+1= .

comparisons

Bubble Sort

e |f we use the last swap trick:

 Best case behavior: The array is sorted, we did not do
any swap, and we are done after a single pass with

n — 1 comparisons

Bubble Sort

e Bubble sort is known to be the least efficient sort for data
that is not already sorted

e Among the sorting algorithms that do not try to be
horrible

Bubble Sort Invariant

* | oop Invariant:

e After execution of outer loop with value i

e arr[n-i-1:n] contains the 1+1 maximal values in
ascending order

def bubblesort (arr) :
n = len(arr)
for 1 in range(n-1):
for jJ 1n range(n-i-1):
if arr[j] > arr[j+1]:
arr[j],arr[J+l]=arr[j+1l],arr[]]

Bubble Sort Invariant

e After execution of outer loop with value i

e arr[n-i-1:n] contains the 1+1 maximal values in
ascending order

e Follows from:

* The inner loop selects the maximum element in
arr[0:n-i] and movesittoarr[n-i-1]

def bubblesort (arr) :
n = len(arr)
for 1 in range(n-1):
for jJ 1n range(n-1-1):
if arr[j] > arr[j+1]:
arr[j],arr[J+1l]=arr[j+1l],arr[]]

Insertion Sort

Thomas Schwarz, SJ

Insertion Sort

e |dea:
 Break the array into a sorted and an unsorted part

* Move first element of the unsorted part into the
correct position in the sorted array

Insertion Sort

e Example:

PN B - - DEE

 Reddish part is unsorted: initially whole array

 Greenish part is sorted: initially empty

Insertion Sort

e Example:

* First element in the red part is 4:

* Insert 4 into the green part

Insertion Sort

Example

e Next unsorted element is 2

e Compare with 4

e |nsert in front of 4

. O

Insertion Sort

e Example
B | - - BEE

e Next unsorted element is 6

e Compare with 2, then 4

e |nsert after 4

Insertion Sort

e Example

e Next unsorted element is 5

e Compare with 2, 4, 6
* |Insert before 6

. |2

3|10

Insertion Sort

Example
. 2

e Next unsorted element is 3

3|10

e Compare with 2, then 4

e |nsert before 4

Insertion Sort

Example

e Next comes 1

e Compare with 2

e |nsert before 2

0

Insertion Sort

e Example

e Final unsorted element is O

0

e Compare with 1

* Insert before 1

e We are done

Insertion Sort

e Performance:

* |nserting at a specific index in an array means moving the
elements after the insertion

 This is a big hidden cost

* Inserting at a specific index into a linked list only involves
finding the insertion point and constant link resetting work

e However, we can now avoid comparisons

e To insert into a sorted array of length 1

l
. only need on average — + 1 comparisons

2

Insertion Sort

 Average case:

l
o Passihas | 5 comparisons

n—1 .
| -1
, Total of Z (1 + %) =n n(n — 1) comparisons
i=0

2 2

Insertion Sort

e Best Case:

e Only one comparison per pass:

e New element inserted into the

sorted part is smaller than the

current minimum of the part

* QOriginal array is ordered from

maximum to minimum

Insertion Sort Invariant

o After each step, the green array is correctly sorted

o After each step, the multi-set of elements has not
changed

