Analysis of Euclidean Algorithm

Algorithms
Thomas Schwarz, SJ

- Given two numbers $a, b \in \mathbb{N}$:
 - a divides b $a \mid b : \iff \exists x \in \mathbb{N} : b = ax$
 - Divisors are smaller than the dividend
 - $a \mid b \Longrightarrow a \leq b$
 - r is a common divisor of a and b iff $r \mid a \land r \mid b$
 - $gcd(a,b) = max\{r: r \mid a \land r \mid b\}$
 - Always exists because the set is finite
 - Any finite subset of the natural numbers has a maximum

- Lemma 1: For all numbers $a, b \in \mathbb{N}$: gcd(a, b) = gcd(b, a)
- Proof: The set of common divisors does not depend on the order in which a and b are given:
 - $\{r: r \mid a \land r \mid b\} = \{r: r \mid b \land r \mid a\}$ because the logical and operator is commutative

Hence:
$$gcd(a, b) = max\{r : r \mid a \land r \mid b\}$$

$$= max\{r : r \mid b \land r \mid a\}$$

$$= gcd(b, a)$$

- Lemma 2: If $a \in \mathbb{N}$ and $a \mid b$ then gcd(a, b) = a.
- Proof:
 - a is the largest divisor of itself.
 - a is also a divisor of b by assumption
 - Hence a is the largest element in the set of common divisors $\{r: r \mid a \wedge r \mid b\}$.
 - This means that $a = \max\{r : r \mid a \land r \mid b\} = \gcd(a, b)$

- Lemma 3: If $a \equiv c \pmod{b}$ then gcd(a, b) = gcd(c, b)
- Proof:
 - $a \equiv c \pmod{b} \iff \exists r, s, t \in \mathbb{N}_0 : a = rb + t \land c = sb + t \land 0 \le t < b$
 - We show that $\{r: r \mid a \wedge r \mid b\} = \{r: r \mid c \wedge r \mid b\}$
 - Assume that $d \in \mathbb{N}$ is in the left side. We want to show that it is also in the right side. For this we need to show that d also divides c.
 - What do we know: There exists $x, y \in \mathbb{N}_0$ such that
 - b = xd because d divides b
 - a = yd because d divides a
 - $a = rb + t, c = sb + t, 0 \le t < b$

Proof (continued)

$$c = c - a + a$$

$$= ((sb+t) - (rb+t)) + a$$

$$= (s-r)b + a$$

$$= (s-r)xd + yd$$

$$= ((s-r)x + y)d$$

- Proof: (cont)
 - Now we want to show that all elements on the right side of $\{r: r \mid a \land r \mid b\} = \{r: r \mid c \land r \mid b\}$ are in the left side.
 - However, since our assumptions are symmetric in a and c, the same proof applies.

- Informal Version:
 - To compute gcd(a, b) put the larger number of a and b on the left
 - Then divide a by b with remainder r (a = bx + r)
 - If r = 0, then $b \mid a$ and gcd(a, b) = b.
 - Otherwise:
 - Notice that $r \equiv a \pmod{b}$.
 - Therefore gcd(a, b) = gcd(r, b) = gcd(b, r) by the Lemma
 - Continue until the remainder becomes 0

- gcd(1043, 4321)
 - \bullet = gcd(4321, 1043)
 - \bullet = gcd(1043, 149)
 - = 149 because 1043 % 149 = 0.
- There is an interesting extension:
 - 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear combination of 4321 and 1043

```
gcd(198, 168)
```

- $= \gcd(168, 30)$
- $= \gcd(30, 18)$
- $= \gcd(18,12)$
- $= \gcd(12,6)$
- = 6

- 198-168=30
- 18 =168 5*30 =168-5(198-168)=6*168-5*198
- 12 = 30 18 = 198-168-6*168+5*198 = 6*198-7*168
- 6 = 18-12 = -5*198+6*168-6*198+7*168 = -11*198 + 13*168
- GCD is a linear combination of the two parameters!

Pseudo-code

```
def gcd(a, b):
    if b==0:
        return a
    else:
        return gcd(b, a%b)
```

- How do we prove the correctness of an algorithm?
 - Especially if it contains a loop
 - Usually, need to use induction
 - Sometimes using a loop invariant

```
gcd(198, 168)
= gcd(168, 30)
= gcd(30, 18)
= gcd(18, 12)
= gcd(12, 6)
= gcd(6, 0)
```

- In this case: gcd(var1,var2) does not change between between calls
- That is Lemma 3!
- End if the algorithm ever ends, it prints out the correct value by Lemma 1.

- How do we prove the correctness of the algorithm?
 - It is possible that an algorithm will never stop
 - (on some inputs, or on all inputs)
 - In our case, the smaller of the variables becomes strictly smaller
 - with the exception of the first step
 - Thus, we will run out of variables for our recursive calls sooner or later
- Algorithm will eventually return the correct number

- Performance
 - Obviously, proportional to the number of recursive calls
 - Given two random inputs:
 - Can stop in one iteration
 - If second variable divides the first
 - Or can stop after many
 - In a case like this: look for the worst case scenario

• Theorem: If gcd(a,b) makes N recursive calls and a > b then $a \ge f_{N+2}$ and $b \ge f_{N+1}$

- Proof:
 - By induction
 - Base case: N=1:
 - In this case $b \neq 0$, hence $b \geq 1 = f_1$
 - In this case a > b, so $a > b = 1 \Longrightarrow a \ge 2 = f_2$

```
def gcd(a, b):
    if b==0:
        return a
    else:
        return gcd(b, a%b)
```

- Induction step
 - Induction hypothesis:

```
def gcd(a, b):
    if b==0:
        return a
    else:
        return gcd(b, a%b)
```

- If gcd has N recursive calls then $a \ge f_{N+2}$ and $b \ge f_{N+1}$
- To show:
 - If gcd has N+1 recursive calls, then $a \ge f_{N+3}$ and $b \ge f_{N+2}$

- Assume that gcd(a,b) makes N+1 calls.
- The first step calls gcd(b,a%b)

- def gcd(a, b):
 if b==0:
 return a
 else:
 return gcd(b, a%b)
- This call calls the function recursively N times
 - Thus, by Induction Hypothesis
 - $b \ge f_{N+2}$ and $a \% b \ge f_{N+1}$
 - By division with reminder a = rb + a%b with $0 \le a\%b < b$
 - Because a > b we have $r \ge 1$.
 - Therefore: $a \ge b + a \% b \ge f_{N+2} + f_{N+1} \ge f_{N+3}$.
 - We already know that $b \ge f_{N+2}$

def gcd(a, b):

else:

if b==0:

return a

return gcd(b, a%b)

Can find a closed form of Fibonac¢i

$$\Phi = \frac{1+\sqrt{5}}{2} \approx 1.68$$

- $b \ge f_{N+2} \ge \Phi^N$
- This implies that $\log_{\Phi}(b) \ge N 1$ and $N = O(\log b)$

- Recursion usually demands induction proofs to assert properties of an algorithm
- For loops, use loop invariant:
 - A property that is true before the loop starts
 - A property that remains true after each loop iteration
 - And is therefore true after the loop terminates

- Working with loop invariants:
 - Need to come up with a loop invariant
 - Prove that it is true before the loop starts (induction base)
 - Prove that it remains true after each iteration of the loop

- Trivial Example:
 - Small C-program

```
extern int c;
int x = c, y = 0;
while (x>=0):
    x--;
    y++;
print(y)
```

Step 1: Guessing a loop invariant

```
extern int c;
int x = c, y = 0;
while (x>=0):
    x--;
    y++;
print(y)
```

- Needs to involve x, y, c
 - x + y = c

- Step 2:
 - Show that it is true before the loop starts
 - Simple: before the loop starts, we have x=c,y=0 therefore x+y=c

- Step 3: Show that the truth does not change after one iteration
 - Induction step: Assume $x_b + y_b = c$ before the loop iteration
 - After the iteration, we have $x_a = x_b 1$, $y_a = y_b + 1$.
 - This implies
 - $x_a + y_a = (x_b 1) + (y_b + 1) = x_b + y_b 1 + 1 = x_b + y_b = c$

- Step 4: Evaluate with the loop invariant
 - When the loop is terminated, x = 0.
 - (Question: why do we now that the loop terminates?)
 - Therefore, the value of y is y = x + y x = c 0 = c
 - Thus, the function prints out the value of c.

Examples

Thomas Schwarz, SJ

- Idea of bubble sort:
 - Repeatedly swap adjacent elements in an array until they are in order
 - Reminder: Swaps in Python are easy:

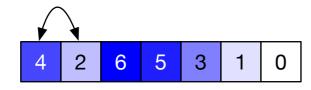
```
• arr[i], arr[i+1] = arr[i+1], arr[i]
```

while not done:

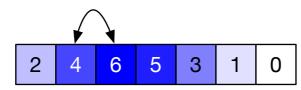
```
for i in range(len(arr)-1):
    if arr[i] > arr[i+1]:
        arr[i],arr[i+1]=arr[i+1],arr[i]
```

• Example: Sort

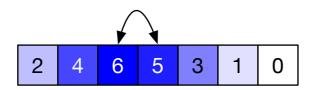
First pass: Check first pair



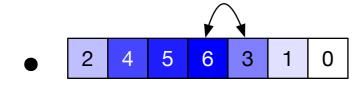
Swap and move on



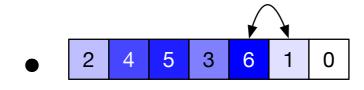
No swap necessary, move on



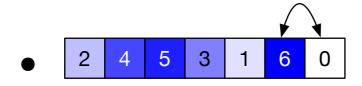
- Example:
 - Swap and move on



Swap and move on

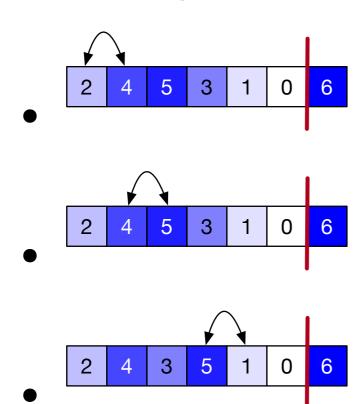


Swap and move on

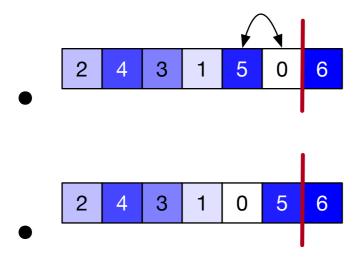


- Example:
 - Swap and move on
 - 2 4 5 3 1 0 6
 - Array is still not sorted, so we need to continue
 - However: Notice that the maximum element has been picked up and is now at the correct position
 - We only have to order the first n-1 positions

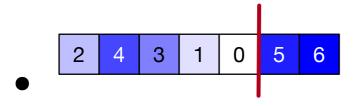
- Example
 - Second pass:



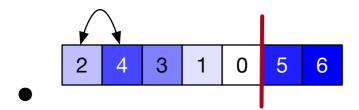
Example (Second Pass):

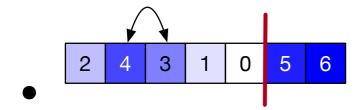


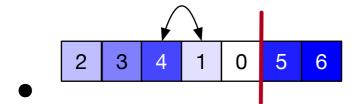
 The maximum in the remaining array has now reached its correct point

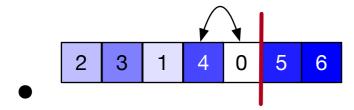


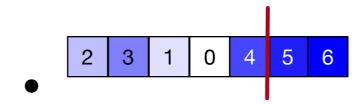
Example: Third Pass



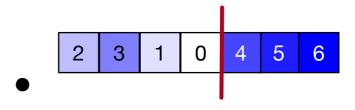




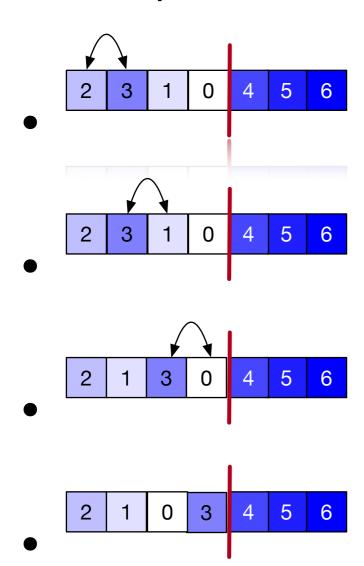




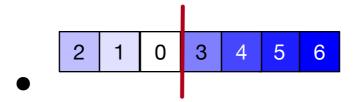
 Third largest element has bubbled up to the correct place



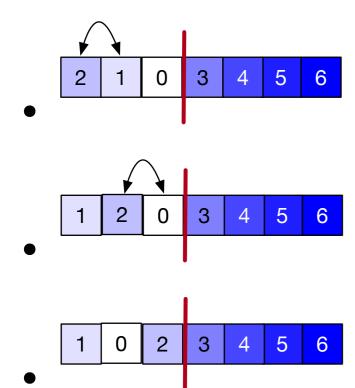
Fourth pass



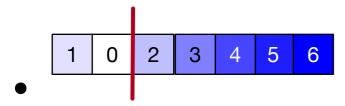
Now 3 has bubbled up



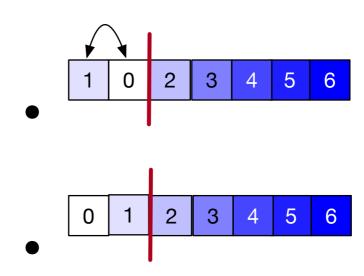
Fifth Pass



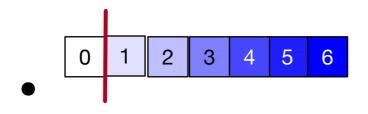
• 2 has bubbled up



Final Pass



• 1 has bubbled up, and a singleton is always sorted:



- We need one less pass than there are array elements
 - And we do not need to look at the last elements of the array

- Potential improvements:
 - After each pass, the elements after the last swap are already in order
 - We can skip the corresponding passes
 - But need to keep track of the last swap

- Performance:
 - At pass i, i = 0, 1, ..., n-2, we compare n-i-1 values
 - This means, we make
 - $(n-1) + (n-2) + ... + 2 + 1 = \frac{n(n-1)}{2}$ comparisons

- If we use the last swap trick:
 - Best case behavior: The array is sorted, we did not do any swap, and we are done after a single pass with
 - n-1 comparisons

- Bubble sort is known to be the least efficient sort for data that is not already sorted
 - Among the sorting algorithms that do not try to be horrible

Bubble Sort Invariant

- Loop Invariant:
 - After execution of outer loop with value i
 - arr[n-i-1:n] contains the i+1 maximal values in ascending order

Bubble Sort Invariant

- After execution of outer loop with value i
 - arr[n-i-1:n] contains the i+1 maximal values in ascending order
 - Follows from:
 - The inner loop selects the maximum element in arr [0:n-i] and moves it to arr [n-i-1]

Thomas Schwarz, SJ

- Idea:
 - Break the array into a sorted and an unsorted part
 - Move first element of the unsorted part into the correct position in the sorted array

- Example:
 - Sort 4 2 6 5 3 1 0
 - Reddish part is unsorted: initially whole array
 - Greenish part is sorted: initially empty

- Example:
 - 4 2 6 5 3 1 0
 - First element in the red part is 4:
 - Insert 4 into the green part
 - 4 2 6 5 3 1 0

- Example
 - 4 2 6 5 3 1 0
 - Next unsorted element is 2
 - Compare with 4
 - Insert in front of 4
 - 6 5 3 1 0

- Example
 - 6 5 3 1 0
 - Next unsorted element is 6
 - Compare with 2, then 4
 - Insert after 4
 - 2
 4
 6

 5
 3
 1
 0

- Example
 - 2 4 6 5 3 1 0
 - Next unsorted element is 5
 - Compare with 2, 4, 6
 - Insert before 6
 - 2 4 5 6 3 1 0

- Example
 - 2 4 5 6 3 1 0
 - Next unsorted element is 3
 - Compare with 2, then 4
 - Insert before 4
 - 2 3 4 5 6 1 0

- Example
 - 2 3 4 5 6 1 0
 - Next comes 1
 - Compare with 2
 - Insert before 2
 - 1 2 3 4 5 6

- Example
 - 1 2 3 4 5 6 0
 - Final unsorted element is 0
 - Compare with 1
 - Insert before 1
 - 0 1 2 3 4 5 6
 - We are done

Performance:

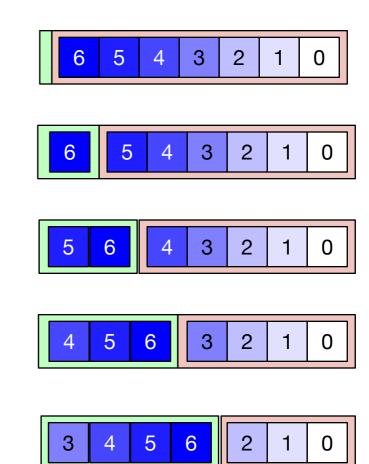
- Inserting at a specific index in an array means moving the elements after the insertion
 - This is a big hidden cost
- Inserting at a specific index into a linked list only involves finding the insertion point and constant link resetting work
- However, we can now avoid comparisons
- To insert into a sorted array of length i
 - only need on average $\frac{i}{2} + 1$ comparisons

Average case:

• Pass
$$i$$
 has $1 + \frac{i}{2}$ comparisons

• Total of
$$\sum_{i=0}^{n-1} (1 + \frac{i}{2}) = n + \frac{1}{2} \frac{n(n-1)}{2}$$
 comparisons

- Best Case:
 - Only one comparison per pass:
 - New element inserted into the sorted part is smaller than the current minimum of the part
 - Original array is ordered from maximum to minimum



Insertion Sort Invariant

- After each step, the green array is correctly sorted
- After each step, the multi-set of elements has not changed