
Analysis of Euclidean 
Algorithm

Algorithms

Thomas Schwarz, SJ



Greatest Common Divisor
• Given two numbers :


•  divides        


• Divisors are smaller than the dividend


• 


•  is a common divisor of  and  iff  


• 


• Always exists because the set is finite


• Any finite subset of the natural numbers has a maximum

a, b ∈ ℕ

a b a ∣ b :⟺ ∃x ∈ ℕ : b = ax

a ∣ b ⟹ a ≤ b

r a b r ∣ a ∧ r ∣ b

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}



Greatest Common Divisor
• Lemma 1:   For all numbers :  




• Proof: The set of common divisors does not depend on the 
order in which a and b are given:


•  because the 
logical and operator is commutative


Hence:  





a, b ∈ ℕ
gcd(a, b) = gcd(b, a)

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ b ∧ r ∣ a}

gcd(a, b) = max{r : r ∣ a ∧ r ∣ b}

= max{r : r ∣ b ∧ r ∣ a}

= gcd(b, a)



Greatest Common Divisor
• Lemma 2:  If  and  then .


• Proof:  


•  is the largest divisor of itself.


•  is also a divisor of  by assumption


• Hence  is the largest element in the set of common 
divisors .


• This means that 

a ∈ ℕ a ∣ b gcd(a, b) = a

a

a b

a
{r : r ∣ a ∧ r ∣ b}

a = max{r : r ∣ a ∧ r ∣ b} = gcd(a, b)



Greatest Common Divisor
• Lemma 3: If   then 


• Proof:


•   


• We show that 


• Assume that  is in the left side.  We want to show that it is also in 
the right side. For this we need to show that  also divides c.


• What do we know: There exists  such that 


•           because  divides 


•           because  divides 


•

a ≡ c (mod b) gcd(a, b) = gcd(c, b)

a ≡ c (mod b) ⟺ ∃r, s, t ∈ ℕ0 : a = rb + t ∧ c = sb + t ∧ 0 ≤ t < b

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

d ∈ ℕ
d

x, y ∈ ℕ0

b = xd d b

a = yd d a

a = rb + t, c = sb + t,0 ≤ t < b



Greatest Common Divisor
• Proof (continued)


• c = c� a+ a

= ((sb+ t)� (rb+ t)) + a

= (s� r)b+ a

= (s� r)xd+ yd

= ((s� r)x+ y)d

<latexit sha1_base64="b9Xg+Gw8lpuU4qZbUwSD4rwtZhA="></latexit>



Greatest Common Divisor
• Proof: (cont)


• Now we want to show that all elements on the right 
side of  are in 
the left side.


• However, since our assumptions are symmetric in  
and , the same proof applies.

{r : r ∣ a ∧ r ∣ b} = {r : r ∣ c ∧ r ∣ b}

a
c



Euclidean Algorithm
• Informal Version:


• To compute  put the larger number of  and  on the left


• Then divide  by  with remainder   ( )


• If , then  and .


• Otherwise: 


• Notice that .


• Therefore  by the Lemma


• Continue until the remainder becomes 0

gcd(a, b) a b

a b r a = bx + r

r = 0 b ∣ a gcd(a, b) = b

r ≡ a (mod b)

gcd(a, b) = gcd(r, b) = gcd(b, r)



Euclidean Algorithm
• gcd(1043, 4321)


• = gcd(4321, 1043)


• = gcd(1043, 149)


• = 149 because 1043 % 149 = 0.


• There is an interesting extension:


• 4321=4*1043+149, ergo 149 = 4321-4*1043, a linear 
combination of 4321 and 1043



Euclidean Algorithm
gcd(198, 168) 


= gcd(168, 30)


= gcd(30, 18)


= gcd(18,12)


= gcd(12,6)


= 6

• 198-168=30


• 18 =168 - 5*30 
=168-5(198-168)=6*168-5*198


• 12 = 30 - 18 = 198-168-6*168+5*198 = 
6*198-7*168


• 6 = 18-12 = -5*198+6*168-6*198+7*168 = 
-11*198 + 13*168


• GCD is a linear combination of the two 
parameters!



Euclidean Algorithm
• Pseudo-code

def gcd(a, b):

    if b==0:

        return a

    else:

        return gcd(b, a%b)



Euclidean Algorithm
• How do we prove the correctness of an algorithm?


• Especially if it contains a loop


• Usually, need to use induction


• Sometimes using a loop invariant


• In this case:  gcd(var1,var2) does not change 
between between calls


• That is Lemma 3!


• End if the algorithm ever ends, it prints out the 
correct value by Lemma 1.

gcd(198, 168) 

= gcd(168, 30)

= gcd(30, 18)

= gcd(18,12)

= gcd(12,6)

= gcd(6,0)



Euclidean Algorithm
• How do we prove the correctness of the algorithm?


• It is possible that an algorithm will never stop


• (on some inputs, or on all inputs)


• In our case, the smaller of the variables becomes 
strictly smaller


• with the exception of the first step


• Thus, we will run out of variables for our recursive calls 
sooner or later


• Algorithm will eventually return the correct number



Euclidean Algorithm
• Performance


• Obviously, proportional to the number of recursive calls


• Given two random inputs:


• Can stop in one iteration


• If second variable divides the first


• Or can stop after many


• In a case like this:  look for the worst case scenario



Euclidean Algorithm
• Theorem:  If gcd(a,b) makes N recursive calls and a > b 

then  and a ≥ fN+2 b ≥ fN+1



Euclidean Algorithm
• Proof:


• By induction


• Base case:  :


• In this case , hence 


• In this case , so 

N = 1

b ≠ 0 b ≥ 1 = f1
a > b a > b = 1 ⟹ a ≥ 2 = f2

def gcd(a, b):

    if b==0:

        return a

    else:

        return gcd(b, a%b)



Euclidean Algorithm
• Induction step


• Induction hypothesis:


• If gcd has  recursive calls then  and 



• To show:


• If gcd has  recursive calls, then  
and 

N a ≥ fN+2
b ≥ fN+1

N + 1 a ≥ fN+3
b ≥ fN+2

def gcd(a, b):

    if b==0:

        return a

    else:

        return gcd(b, a%b)



Euclidean Algorithm
• Assume that gcd(a,b) makes N+1 calls.


• The first step calls gcd(b,a%b)


• This call calls the function recursively N times


• Thus, by Induction Hypothesis


•  and 


• By division with reminder  with 


• Because  we have .


• Therefore: .


• We already know that 

b ≥ fN+2 a % b ≥ fN+1

a = rb + a % b 0 ≤ a % b < b

a > b r ≥ 1

a ≥ b + a % b ≥ fN+2 + fN+1 ≥ fN+3

b ≥ fN+2

def gcd(a, b):

    if b==0:

        return a

    else:

        return gcd(b, a%b)



Euclidean Algorithm
• Can find a closed form of Fibonacci


• 


•  


• This implies that  and 

Φ =
1 + 5

2
≈ 1.68

b ≥ fN+2 ≥ ΦN

logΦ(b) ≥ N − 1 N = O(log b)

def gcd(a, b):

    if b==0:

        return a

    else:

        return gcd(b, a%b)



Loop Invariants
• Recursion usually demands induction proofs to assert 

properties of an algorithm


• For loops, use loop invariant:


• A property that is true before the loop starts


• A property that remains true after each loop iteration


• And is therefore true after the loop terminates



Loop Invariants
• Working with loop invariants:


• Need to come up with a loop invariant


• Prove that it is true before the loop starts (induction 
base)


• Prove that it remains true after each iteration of the 
loop



Loop Invariants
• Trivial Example:


• Small C-program

extern int c;

int x = c, y = 0;

while (x>=0):

   x--;

   y++;

print(y)



Loop Invariants
• Step 1: Guessing a loop invariant


• Needs to involve x, y, c


• x + y = c

extern int c;

int x = c, y = 0;

while (x>=0):

   x--;

   y++;

print(y)



Loop Invariants
• Step 2:


• Show that it is true before the loop starts


• Simple:  before the loop starts, we have  
therefore 

x = c, y = 0
x + y = c



Loop Invariants
• Step 3:  Show that the truth does not change after one 

iteration


• Induction step:  Assume  before the loop 
iteration


• After the iteration, we have , .


• This implies 


•

xb + yb = c

xa = xb − 1 ya = yb + 1

xa + ya = (xb − 1) + (yb + 1) = xb + yb − 1 + 1 = xb + yb = c



Loop Invariants
• Step 4:  Evaluate with the loop invariant


• When the loop is terminated, .  


• (Question: why do we now that the loop terminates?)


• Therefore, the value of  is 



• Thus, the function prints out the value of .

x = 0

y
y = x + y − x = c − 0 = c

c



Examples



Bubble Sort
Thomas Schwarz, SJ



Bubble Sort
• Idea of bubble sort:


• Repeatedly swap adjacent elements in an array until 
they are in order


• Reminder: Swaps in Python are easy:


• arr[i],arr[i+1] = arr[i+1],arr[i]


• while not done:

for i in range(len(arr)-1):

    if arr[i] > arr[i+1]:

        arr[i],arr[i+1]=arr[i+1],arr[i]



Bubble Sort
• Example:  Sort 


• First pass: Check first pair


• Swap and move on


• No swap necessary, move on

6 35 1 024

6 35 1 024

6 35 1 02 4

6 35 1 02 4



Bubble Sort
• Example:


• Swap and move on


• 


• Swap and move on


• 


• Swap and move on


•

6 35 1 02 4

635 1 02 4

635 1 02 4



Bubble Sort
• Example:


• Swap and move on


• 


• Array is still not sorted, so we need to continue


• However: Notice that the maximum element has been 
picked up and is now at the correct position


• We only have to order the first  positions

635 1 02 4

n − 1



Bubble Sort
• Example


• Second pass:


• 


• 


•

635 1 02 4

635 1 02 4

63 5 1 02 4



Bubble Sort
• Example (Second Pass):


• 


• 


• The maximum in the remaining array has now reached its 
correct point


•

63 51 02 4

63 51 02 4

63 51 02 4



Bubble Sort
• Example: Third Pass


• 


• 


• 


•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

• 


• Third largest element 
has bubbled up to the 
correct place


•

63 51 02 4

63 51 02 4



Bubble Sort
• Fourth pass


• 


• 


• 


•

63 51 02 4

63 51 02 4

63 51 02 4

63 51 02 4

• Now 3 has bubbled up


•
63 51 02 4



Bubble Sort
• Fifth Pass


• 


• 


• 


• 2 has bubbled up


•

63 51 02 4

63 51 02 4

63 51 0 2 4

63 51 0 2 4

• Final Pass


• 


• 


• 1 has bubbled up, and a 
singleton is always sorted:


•

63 51 0 2 4

63 510 2 4

63 510 2 4



Bubble Sort
• We need one less pass than there are array elements


• And we do not need to look at the last elements of the 
array

def bubblesort(arr):

   n = len(arr)

   for i in range(n-1):

      for j in range(n-i-1):

          if arr[j] > arr[j+1]:

              arr[j],arr[j+1]=arr[j+1],arr[j]



Bubble Sort
• Potential improvements:


• After each pass, the elements after the last swap are 
already in order


• We can skip the corresponding passes


• But need to keep track of the last swap



Bubble Sort
• Performance:


• At pass , we compare  
values


• This means, we make


•  

comparisons

i, i = 0,1,…, n − 2 n − i − 1

(n − 1) + (n − 2) + … + 2 + 1 =
n(n − 1)

2



Bubble Sort
• If we use the last swap trick:


• Best case behavior: The array is sorted, we did not do 
any swap, and we are done after a single pass with 

 comparisonsn − 1



Bubble Sort
• Bubble sort is known to be the least efficient sort for data 

that is not already sorted


• Among the sorting algorithms that do not try to be 
horrible



Bubble Sort Invariant
• Loop Invariant:


• After execution of outer loop with value i


• arr[n-i-1:n] contains the i+1 maximal values in 
ascending order

def bubblesort(arr):

   n = len(arr)

   for i in range(n-1):

      for j in range(n-i-1):

          if arr[j] > arr[j+1]:

              arr[j],arr[j+1]=arr[j+1],arr[j]



Bubble Sort Invariant
• After execution of outer loop with value i


• arr[n-i-1:n] contains the i+1 maximal values in 
ascending order


• Follows from: 


• The inner loop selects the maximum element in 
arr[0:n-i] and moves it to arr[n-i-1]

def bubblesort(arr):

   n = len(arr)

   for i in range(n-1):

      for j in range(n-i-1):

          if arr[j] > arr[j+1]:

              arr[j],arr[j+1]=arr[j+1],arr[j]



Insertion Sort
Thomas Schwarz, SJ



Insertion Sort
• Idea:


• Break the array into a sorted and an unsorted part


• Move first element of the unsorted part into the 
correct position in the sorted array



Insertion Sort
• Example:


• Sort 


• Reddish part is unsorted: initially whole array


• Greenish part is sorted: initially empty

6 35 1 024



Insertion Sort
• Example:


• 


• First element in the red part is 4:


• Insert 4 into the green part


•

6 35 1 024

6 35 1 024



Insertion Sort
• Example


• 


• Next unsorted element is 2


• Compare with 4


• Insert in front of 4


•

6 35 1 024

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 6


• Compare with 2, then 4


• Insert after 4


•

6 35 1 02 4

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 5


• Compare with 2, 4, 6


• Insert before 6


•

6 35 1 02 4

6 35 1 02 4



Insertion Sort
• Example


• 


• Next unsorted element is 3


• Compare with 2, then 4


• Insert before 4


•

6 35 1 02 4

63 5 1 02 4



Insertion Sort
• Example


• 


• Next comes 1


• Compare with 2


• Insert before 2


•

63 5 1 02 4

63 51 02 4



Insertion Sort
• Example


• 


• Final unsorted element is 0


• Compare with 1


• Insert before 1


• 


• We are done

63 51 02 4

63 510 2 4



Insertion Sort
• Performance:


• Inserting at a specific index in an array means moving the 
elements after the insertion


• This is a big hidden cost


• Inserting at a specific index into a linked list only involves 
finding the insertion point and constant link resetting work


• However, we can now avoid comparisons


• To insert into a sorted array of length 


• only need on average  comparisons

i
i
2

+ 1



Insertion Sort
• Average case:


• Pass  has  comparisons


• Total of  comparisons

i 1 +
i
2

n−1

∑
i=0

(1 +
i
2

) = n +
1
2

n(n − 1)
2



Insertion Sort
• Best Case:


• Only one comparison per pass:


• New element inserted into the 
sorted part is smaller than the 
current minimum of the part


• Original array is ordered from 
maximum to minimum

6 35 1 024

6 35 1 024

6 35 1 024

6 35 1 024

63 5 1 024



Insertion Sort Invariant
• After each step, the green array is correctly sorted


• After each step, the multi-set of elements has not 
changed


