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Complete Enumeration
• You are given:


• A set of numbers, e.g. 


• A target number 


• Your task is to find a subset of  such that the sum of the 
numbers in the subset is as close to  as possible.

𝕊 = {1,5,12,14,19,20,21}
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Complete Enumeration
• Complete enumeration solves this by 


• creating all subsets


• selecting the one that works best


• One possibility is to use recursion for complete 
enumeration



Complete Enumeration
• Base case:


• Subsets of the empty set are just the empty set


• Subsets of a set with one element  are just x ∅, {x ]

subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …



Complete Enumeration
• Recursive Case:


• Subsets of the set  are:


• Subsets of 


• Subsets consisting of a subset of  and 

{a1, …, an}

{a1, …, an−1}

{a1, …, an−1} an
subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …



Complete Enumeration
• How to represent sets?


• Python has a type sets, but the elements need to be 
hashable


• And sets are not hashable


• Could use frozen_sets, but these are ugly


• So, create the set of subsets as a list



Complete Enumeration
• Implementation:

def subsets(a_list):

    if len(a_list) == 0:

        return []

    if len(a_list) == 1:

        return [[], [a_list[-1]]]

    lst = a_list[-1]

    menge = subsets(a_list[:-1])

    return menge + [ x+[lst] for x in menge] 



Complete Enumeration
• Example:   target 37:


•

𝕊 = {1,5,12,14,19,20,21}

lista = [1, 5, 12, 14, 19, 20, 21]


for subset in subsets(lista):

    if sum(subset) == 37:

        print(subset)

[1, 5, 12, 19]

[5, 12, 20]



Complete Enumeration
• If you want to find the best approximation, you need to 

remember the best value so far

def find(lista, target):

    best = sum(lista)+1

    best_seen = []

    for subset in subsets(lista):

        if abs(sum(subset) - target) < best:

            best = abs(sum(subset) - target)

            best_seen = subset

    return best, best_seen



Complete Enumeration
• Example:  Target is 43


• Best:  1, [5, 19, 20]



Complete Enumeration
• Complete enumeration of subsets generates  subsets


• Therefore, is exponential


• In general: complete enumeration with recursion creates a 
call tree with  or  leaves

2n

bn bn+1



Back Tracking
• Idea:


• We do not always need to go down to the leaves of the 
tree, but can stop earlier



Back Tracking
• Example:


• The n-queens problem


• Place n-queens on a  
chessboard so that no queen 
threatens any other


• Queens can move vertically, 
horizontally, and diagonally

n × n



Back Tracking
• Strategy:


• We notice that there can be only one queen per column


• And that there has to be one in every column to get the 
total number to n



Back Tracking
• Add queen to a partial solution


• Check whether queen placement is possible


• If not, stop this branch in the tree


• Trick is to use recursion so that we do not have to 
administer walking up and down the tree



Back Tracking
• We encode the problem by having a list board


•  queen is located in column  and row board[i]


• E.g. board = [1,3,0,7,4]

i th i

row 7
col 3



Back Tracking
• E.g. board=[1,3,0,7,4]


• We then assign the next queen in column 5


• We try out: 0, 1, 2, … , 7


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4]


• We then assign the next queen in row 5


• We try out: 0, 1, 2, … , 7


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4]


• We then assign the next queen in row 5


• We try out: 0, 1, 2, … , 7


• 2 does work


• board=[1,3,0,7,4, 2]



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 0


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 1


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 2


• 2 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 3


• 3 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 4


• 4 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2]


• We then assign the next queen in column 6


• We try out: 5


• 5 does work


• board=[1,3,0,7,4,2,5]



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We then assign the next queen in column 7


• We try out: 0


• 0 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We then assign the next queen in column 7


• We try out: 1


• 1 does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We then assign the next queen in column 7


• We try out: 2, 3, ..., 7


• none works



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We now remove 5


• board=[1,3,0,7,4,2]



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We now remove 5


• board=[1,3,0,7,4,2]


• And go to the next one


• board=[1,3,0,7,4,2,6]


• which does not work



Back Tracking
• E.g. board=[1,3,0,7,4,2,5]


• We now remove 5


• board=[1,3,0,7,4,2]


• And go to the next one


• board=[1,3,0,7,4,2,6]


• which does not work


• so we try the next one


• board=[1,3,0,7,4,2,7]


• which does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,2,?]


• All possibilities are 
exhausted


• We return and try the next 
position for column 5



Back Tracking
• E.g. 
board=[1,3,0,7,4,3]


• 3 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,4]


• 4 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,5]


• 5 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,6]


• 6 does not work



Back Tracking
• E.g. 
board=[1,3,0,7,4,7]


• 7 does not work



Back Tracking
• E.g. board=[1,3,0,7,4]


• Since we exhausted all 
possibilities, we know this 
position is hopeless


• So we move on to the next 
possibility


• board=[1,3,0,7,5]


• Which does not work



Back Tracking
• E.g. board=[1,3,0,7,6]


• Not valid



Back Tracking
• E.g. board=[1,3,0,7]


• Not valid


• So, we remove and return



Back Tracking
• E.g. board=[1,3,0,7]


• Now more possibilities in 
column 3


• We return and board is 
now [1,3,0] and we try 
the next possibility 
[1,3,1]



Back Tracking
• E.g. board=[1,3,0]


• First valid partial board is 


• board=[1,3,5]


•



Back Tracking
• E.g. board=[1,3,0]


• Which will be a progenitor 
of a solution



Back Tracking
• Need to check validity:


• Set-up guarantees that queens are in different columns


• Need to check that a new queen is not in the same row 
or in one of the two diagonals with any already placed 
queen 

def is_valid(board):

    current_queen_row, current_queen_col = len(board)-1, board[-1]

    for row, col in enumerate(board[:-1]):

        diff = abs(current_queen_col - col)

        if diff == 0 or diff == current_queen_row - row:

            return False

    return True



Back Tracking
def queens(n, board = []):

    if n == len(board):

        return board

    for col in range(n):

        board.append(col)

        if is_valid(board):

            board = queens(n, board)

            if is_valid(board) and len(board)==n:

                return (board)

        board.pop()

    return board



Back Tracking
• Notice how we add and a remove a value from the board

def queens(n, board = []):

    if n == len(board):

        return board

    for col in range(n):

        board.append(col)

        if is_valid(board):

            board = queens(n, board)

            if is_valid(board) and len(board)==n:

                return (board)

        board.pop()

    return board



Back Tracking
• Back-tracking can be used if


• We can construct partial solutions


• We can verify that a partial solution is invalid


• Can we verify if the solution is complete



Back Tracking
• Back-tracking can be used if


• We can construct partial solutions


• We can verify that a partial solution is invalid


• Can we verify if the solution is complete



Back Tracking
•  queens problem:


• Can we construct partial solutions?


• Yes, just use partial boards


• Can we verify that a partial solution is invalid


• Yes, if a queen is in the same row or in the same 
diagonal with one placed before


• Can we verify if the solution is complete


• Yes, when we have reached a board of length n. 

n



Back Tracking
• Example: Sudoku Solver


• Given an initial sudoku position


• Add one new number at a time


• Check whether that number violates any of the rules


• Finish when all numbers have been placed


