
Back-Tracking
Thomas Schwarz, SJ

Complete Enumeration
• You are given:

• A set of numbers, e.g.

• A target number

• Your task is to find a subset of such that the sum of the
numbers in the subset is as close to as possible.

𝕊 = {1,5,12,14,19,20,21}

t

𝕊
t

Complete Enumeration
• Complete enumeration solves this by

• creating all subsets

• selecting the one that works best

• One possibility is to use recursion for complete
enumeration

Complete Enumeration
• Base case:

• Subsets of the empty set are just the empty set

• Subsets of a set with one element are just x ∅, {x]

subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …

Complete Enumeration
• Recursive Case:

• Subsets of the set are:

• Subsets of

• Subsets consisting of a subset of and

{a1, …, an}

{a1, …, an−1}

{a1, …, an−1} an
subsets(a0,a1,a2,a3,… an)

subsets(a0,a1,a2,a3,… an-1) subsets(a0,a1,a2,a3,… an-1)+{an}

subsets(a0,a1,a2,a3,… an-2) subsets(a0,a1,a2,a3,… an-1)+{an-1}

… … … …

subsets(a0,a1,a2,a3,… an-1)+{an-1, an}subsets(a0,a1,a2,a3,… an-1)+{an}

… … … …

Complete Enumeration
• How to represent sets?

• Python has a type sets, but the elements need to be
hashable

• And sets are not hashable

• Could use frozen_sets, but these are ugly

• So, create the set of subsets as a list

Complete Enumeration
• Implementation:

def subsets(a_list):

 if len(a_list) == 0:

 return []

 if len(a_list) == 1:

 return [[], [a_list[-1]]]

 lst = a_list[-1]

 menge = subsets(a_list[:-1])

 return menge + [x+[lst] for x in menge]

Complete Enumeration
• Example: target 37:

•

𝕊 = {1,5,12,14,19,20,21}

lista = [1, 5, 12, 14, 19, 20, 21]

for subset in subsets(lista):

 if sum(subset) == 37:

 print(subset)

[1, 5, 12, 19]

[5, 12, 20]

Complete Enumeration
• If you want to find the best approximation, you need to

remember the best value so far

def find(lista, target):

 best = sum(lista)+1

 best_seen = []

 for subset in subsets(lista):

 if abs(sum(subset) - target) < best:

 best = abs(sum(subset) - target)

 best_seen = subset

 return best, best_seen

Complete Enumeration
• Example: Target is 43

• Best: 1, [5, 19, 20]

Complete Enumeration
• Complete enumeration of subsets generates subsets

• Therefore, is exponential

• In general: complete enumeration with recursion creates a
call tree with or leaves

2n

bn bn+1

Back Tracking
• Idea:

• We do not always need to go down to the leaves of the
tree, but can stop earlier

Back Tracking
• Example:

• The n-queens problem

• Place n-queens on a
chessboard so that no queen
threatens any other

• Queens can move vertically,
horizontally, and diagonally

n × n

Back Tracking
• Strategy:

• We notice that there can be only one queen per column

• And that there has to be one in every column to get the
total number to n

Back Tracking
• Add queen to a partial solution

• Check whether queen placement is possible

• If not, stop this branch in the tree

• Trick is to use recursion so that we do not have to
administer walking up and down the tree

Back Tracking
• We encode the problem by having a list board

• queen is located in column and row board[i]

• E.g. board = [1,3,0,7,4]

i th i

row 7
col 3

Back Tracking
• E.g. board=[1,3,0,7,4]

• We then assign the next queen in column 5

• We try out: 0, 1, 2, … , 7

• 0 does not work

Back Tracking
• E.g. board=[1,3,0,7,4]

• We then assign the next queen in row 5

• We try out: 0, 1, 2, … , 7

• 1 does not work

Back Tracking
• E.g. board=[1,3,0,7,4]

• We then assign the next queen in row 5

• We try out: 0, 1, 2, … , 7

• 2 does work

• board=[1,3,0,7,4, 2]

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 0

• 0 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 1

• 1 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 2

• 2 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 3

• 3 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 4

• 4 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2]

• We then assign the next queen in column 6

• We try out: 5

• 5 does work

• board=[1,3,0,7,4,2,5]

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We then assign the next queen in column 7

• We try out: 0

• 0 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We then assign the next queen in column 7

• We try out: 1

• 1 does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We then assign the next queen in column 7

• We try out: 2, 3, ..., 7

• none works

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We now remove 5

• board=[1,3,0,7,4,2]

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We now remove 5

• board=[1,3,0,7,4,2]

• And go to the next one

• board=[1,3,0,7,4,2,6]

• which does not work

Back Tracking
• E.g. board=[1,3,0,7,4,2,5]

• We now remove 5

• board=[1,3,0,7,4,2]

• And go to the next one

• board=[1,3,0,7,4,2,6]

• which does not work

• so we try the next one

• board=[1,3,0,7,4,2,7]

• which does not work

Back Tracking
• E.g.
board=[1,3,0,7,4,2,?]

• All possibilities are
exhausted

• We return and try the next
position for column 5

Back Tracking
• E.g.
board=[1,3,0,7,4,3]

• 3 does not work

Back Tracking
• E.g.
board=[1,3,0,7,4,4]

• 4 does not work

Back Tracking
• E.g.
board=[1,3,0,7,4,5]

• 5 does not work

Back Tracking
• E.g.
board=[1,3,0,7,4,6]

• 6 does not work

Back Tracking
• E.g.
board=[1,3,0,7,4,7]

• 7 does not work

Back Tracking
• E.g. board=[1,3,0,7,4]

• Since we exhausted all
possibilities, we know this
position is hopeless

• So we move on to the next
possibility

• board=[1,3,0,7,5]

• Which does not work

Back Tracking
• E.g. board=[1,3,0,7,6]

• Not valid

Back Tracking
• E.g. board=[1,3,0,7]

• Not valid

• So, we remove and return

Back Tracking
• E.g. board=[1,3,0,7]

• Now more possibilities in
column 3

• We return and board is
now [1,3,0] and we try
the next possibility
[1,3,1]

Back Tracking
• E.g. board=[1,3,0]

• First valid partial board is

• board=[1,3,5]

•

Back Tracking
• E.g. board=[1,3,0]

• Which will be a progenitor
of a solution

Back Tracking
• Need to check validity:

• Set-up guarantees that queens are in different columns

• Need to check that a new queen is not in the same row
or in one of the two diagonals with any already placed
queen

def is_valid(board):

 current_queen_row, current_queen_col = len(board)-1, board[-1]

 for row, col in enumerate(board[:-1]):

 diff = abs(current_queen_col - col)

 if diff == 0 or diff == current_queen_row - row:

 return False

 return True

Back Tracking
def queens(n, board = []):

 if n == len(board):

 return board

 for col in range(n):

 board.append(col)

 if is_valid(board):

 board = queens(n, board)

 if is_valid(board) and len(board)==n:

 return (board)

 board.pop()

 return board

Back Tracking
• Notice how we add and a remove a value from the board

def queens(n, board = []):

 if n == len(board):

 return board

 for col in range(n):

 board.append(col)

 if is_valid(board):

 board = queens(n, board)

 if is_valid(board) and len(board)==n:

 return (board)

 board.pop()

 return board

Back Tracking
• Back-tracking can be used if

• We can construct partial solutions

• We can verify that a partial solution is invalid

• Can we verify if the solution is complete

Back Tracking
• Back-tracking can be used if

• We can construct partial solutions

• We can verify that a partial solution is invalid

• Can we verify if the solution is complete

Back Tracking
• queens problem:

• Can we construct partial solutions?

• Yes, just use partial boards

• Can we verify that a partial solution is invalid

• Yes, if a queen is in the same row or in the same
diagonal with one placed before

• Can we verify if the solution is complete

• Yes, when we have reached a board of length n.

n

Back Tracking
• Example: Sudoku Solver

• Given an initial sudoku position

• Add one new number at a time

• Check whether that number violates any of the rules

• Finish when all numbers have been placed

