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Analysis of Quicksort
• You should have seen this before!

• We want to sort an array

• Idea of quicksort:

• Pick a random pivot

• Divide the array in elements smaller and larger than 

the pivot

• Recursively order the two subarrays

• Combine the two subarrays into one 
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Analysis of Quicksort
• Example of a divide and conquer algorithm:

• We divide the array into two parts i.e. we divide the 

problem into sub-problems

• We recursively sort the sub-arrays, i.e we solve the 

sub-problems

• We combine the sub-arrays, i.e. we conquer the 

problem by combining the sub-problems



Analysis of Quicksort
• Ideally:  Pivot is always in the middle


• Then time  to sort  elements is 


• 


• Here  is a constant representing the time to choose 
a pivot, divide the array, and to combine the arrays.

• Dividing the array means looking at all elements


• An exact formula would use rounding down and also 
take cognizance of the intricacies of dividing and 
combining


•

T n
T(n) = T(n/2) + T(n/2) + cn

c

T(n) = 2T(⌊n/2⌋) + O(n)



Analysis of Quicksort
• How to solve a recurrence 

• Notice, that there is no base case.


• This is typically,  is always some constant

T(n) = T(n/2) + T(n/2) + cn

T(1)



Analysis of Quicksort
• How do we solve a recurrence like this?

• Use Mathematica or a similarly sophisticated math tool

• Guess a solution and use a proof by induction

• Use substitution until you see a pattern and then prove 

the pattern by induction

• Use a recurrence tree

• Use the Master Theorem (from the book)



Analysis of Quicksort
• Substitution Method:














T(n) = 2T(
n
2

) + cn

= 2 (2T(
n
4

+ c
n
2 ) + cn = 4T(

n
4

) + cn + cn

= 4 (2T(
n
8

) + c
n
4 ) + cn + cn = 8T(

n
8

) + cn + cn + cn

= ⋮
= C + cn + … + cn + cn + cn



Analysis of Quicksort
• 


• How many addend ?

• We get an addend each time we divide by 2


• Can divide     before getting 1

• Therefore:


•

T(n) = C + cn + … + cn + cn + cn
cn

n log2(n)

T(n) = log2(n)cn + C = O(log(n)n)



Analysis of Quicksort
• Now we need to prove it. 

• We start with the induction step


• Hypothesis: 


• To show:  

• That is awkward, so we do not do this

• Use STRONG INDUCTION instead


• Hypothesis:  for all 


• To show:  

• This one can use the recursion


• Notice, we did not specify 

T(n) ≤ C log2(n)n
T(n + 1) ≤ C log2(n + 1)(n + 1)

T(m) ≤ C log2(m)m m < n
T(n) ≤ C log2(n)n

C > 0



Analysis of Quicksort
• We calculate:


   (Recurrence formula with a different c)


  (Using the strong hypothesis)











  IF the right parenthesis is negative


• by adding and subtracting the desired expression

T(n) = 2T(
n
2

) + cn

≤ C log2(
n
2

)
n
2

+ cn

= C(log2(n) − 1)
n
2

+ cn

≤ C(log2(
n
2

)
n
2

+ cn

= C log2(n)n + (cn − C log2(n)
n
2

)

≤ C log2(n)n



Analysis of Quicksort
• The correction should be negative:











• which is true if  and .


• We also need to make C large enough so that .

• Exact analysis is mathematically more involved!

cn − C log2(n)
n
2

≤ 0

⟺ cn ≤ C log2(n)
n
2

⟺ 2c ≤ C log2(n)
n ≥ 4 C ≥ c

T(2) ≤ C



Tower of Hanoi
• n disks of n different parameters are on Peg A.


• Need to move them to Peg C subject to


• Can only one disk at a time


• Can only place smaller disk on bigger ones



Tower of Hanoi: Algorithm
• Recursive Solution


• One disk: Just move the disk (1 move)


• General case:  Move top n-1 disks from A to C. Move 
remaining disk to B. Move n-1 disks from C to A



Tower of Hanoi: Evaluation
• If              is the number of moves for n disks, then


•  

T(n)

T(1) = 1 T(n + 1) = 2T(n) + 1



Solving the recurrence
T(n) = 2T(n − 1) + 1

= 2(2T(n − 2) + 1) + 1 = 4T(n − 2) + 2 + 1

= 23T(n − 3) + 4 + 2 + 1

= 24T(n − 4) + 23 + 22 + 1

= ⋮

= 2n−1 + 2n−2 + …22 + 21 + 20

= 2n − 1



Tower of Hanoi: 
Proof

• Given the recurrence relation 


• Show that 


• Proof by induction:


• Base case: For , we have 


• Induction step:


• Hypothesis:  


• To show: 


• Proof:


 

T(1) = 1; T(n + 1) = 2T(n) + 1
T(n) = 2n − 1

n = 1 T(1) = 1 = 21 − 1

T(n) = 2n − 1
T(n + 1) = 2n+1 − 1.

T(n + 1) = 2T(n) + 1 = 2(2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1



The Upper Bound Trap
• What is wrong here.


• Show that     implies  

• Induction base:  same as before

• Induction step:


• Hypothesis:  


• To show: 

• Proof Attempt:  


           (recurrence)


                         (induction hypothesis)

                         


• And we are stuck


T(1) = 1; T(n + 1) = 2T(n) + 1 T(n) ≤ 2n

T(n) = 2n

T(n + 1) ≤ 2n+1

T(n + 1) = 2Tn + 1
≤ 2 ⋅ 2n + 1
= 2n+1 + 1



The Upper Bound Trap
• However, we can prove a stronger proposition and the proof goes 

through:


• Show that     implies  



• Induction base:  same as before

• Induction step:


• Hypothesis:  


• To show: 

• Proof:  


           (recurrence)


                         (induction hypothesis)

                         


• And we are done

T(1) = 1; T(n + 1) = 2T(n) + 1
T(n) ≤ 2n − 1

T(n) ≤ 2n − 1
T(n + 1) ≤ 2n+1

T(n + 1) = 2Tn + 1
≤ 2 ⋅ (2n − 1) + 1
= 2n+1 − 1



Linear Recurrence 
Examples

• Pell numbers


• 


• Example of linear recurrence


• Assume solution is of the form 

• This results in


• 


• We can divide by  to get


• 


• 


• This means  or 

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2

an

an = 2an−1 + an−2

an−2

a2 = 2a + 1
⇒ a2 − 2a + 1 − 2 = 0 ⇒ (a − 1)2 = 2

a = 1 − 2 a = 1 + 2



Linear Recurrence Example
• Reversely, for these  :  

• Solutions are given by linear combinations 


• with , 


• 


• Now we need to fit the two initial conditions


• 


• The first equation gives  , the second gives 

, which is equivalent to 


• Thus, the closed form is 

a an = 2an−1 + an−2

a1 = 1 + 2 a2 = 1 − 2
Pn = can

1 + dan
2

ca0
1 + da0

2 = 0,ca1
1 + da1

2 = 1
c = − d

c(1 + 2) − c(1 − 2) = 1 c =
1

2 2

Pn =
(1 + 2)n + (1 − 2)n

2 2



An ugly recurrence
• Let's look at .


• First try:  


• Assume 

• Induction step:


•   (recurrence)


•            (ind. hyp.)


•             (algebra)


•              (if )

T(n) = nT( n) + n
T(n) = O(n log n)

T(n) ≤ Cn log n

T(n) = n ⋅ T( n) + n
= nC n log( n) + n

= Cn
1
2

log n + n

≤ Cn log(n) n ≤ n
C
2

log n



An ugly recurrence
• Condition  is true if and only if


• 


• which is always true if  is large enough


• Thus indeed: 

• An easy proof usually means that we were not aggressive 

enough

•

n ≤ n
C
2

log n

1 ≤
C
2

log(n)

n
T(n) = O(n log n)



An ugly recurrence
• Can we prove that ?


• If we assume , what happens


•   (Recurrence)


•           (I. H.)


•          


•            only if  


• But this is never true for large : 

T(n) = Ω(n log n)
T(n) ≥ Dn log(n)

T(n) = n ⋅ T( n) + n
≥ n ⋅ D n log( n) + n

=
D
2

n log(n) + n

≥ Dn log(n) 1 >
D
2

log(n)

n T(n) ∉ Ω(n log n)



An ugly recurrence
• Given 


• Let's try whether .


• Your turn:  Show that .

T(n) = nT( n) + n
T(n) = Θ(n)

T(n) ≥ n



An ugly recurrence
• Solution:


• T(n) = n ⋅ T( n) + n ≥ n



An ugly recurrence
• But can we show ?

• Your turn

T(n) = O(n)



An ugly recurrence
• Solution:


•      recurrence


•                I.H.


•                          algebra


•          


•           

T(n) = nT( n) + n
≤ nC n + n
= Cn + n
= C(n + 1)
≰ Cn So, we are stuck



An ugly recurrence
• Need something between  and 


• Let's try 


•   (recurrence)


•          


•           


•            


•                (log base 2)


• which works with , 

• (For the induction base we can pick C large enough)

n n log(n)
T(n) = Θ(n log(log(n))

T(n) = n ⋅ T( n) + n
≤ n ⋅ C n log(log( n)) + n

= Cn log(
log(n)

2
) + n

= Cn log(log(n)) − Cn log(2) + n
= Cn log(log n)) − Cn + n

C > 1 T(n) = O(n log(log(n))



An ugly recurrence
• Your turn:


• Show T(n) = Ω(n log(log(n))



An ugly recurrence
• Solution:  


•   (recurrence)


•          


•           


•           


•              (log base 2)


• which works if .  

T(n) = n ⋅ T( n) + n
≥ n ⋅ D n log(log( n)) + n

= Dn log(
log(n)

2
) + n

= Dn log(log(n)) − Dn log(2) + n
= Dn log(log n)) − Dn + n

D ≤ 1


