
Solving Recurrence
Relationships

Thomas Schwarz, SJ

Analysis of Quicksort
• You should have seen this before!

• We want to sort an array

• Idea of quicksort:

• Pick a random pivot

• Divide the array in elements smaller and larger than

the pivot

• Recursively order the two subarrays

• Combine the two subarrays into one

xkcd.com/1185

Analysis of Quicksort
• Example of a divide and conquer algorithm:

• We divide the array into two parts i.e. we divide the

problem into sub-problems

• We recursively sort the sub-arrays, i.e we solve the

sub-problems

• We combine the sub-arrays, i.e. we conquer the

problem by combining the sub-problems

Analysis of Quicksort
• Ideally: Pivot is always in the middle

• Then time to sort elements is

•

• Here is a constant representing the time to choose
a pivot, divide the array, and to combine the arrays.

• Dividing the array means looking at all elements

• An exact formula would use rounding down and also
take cognizance of the intricacies of dividing and
combining

•

T n
T(n) = T(n/2) + T(n/2) + cn

c

T(n) = 2T(⌊n/2⌋) + O(n)

Analysis of Quicksort
• How to solve a recurrence

• Notice, that there is no base case.

• This is typically, is always some constant

T(n) = T(n/2) + T(n/2) + cn

T(1)

Analysis of Quicksort
• How do we solve a recurrence like this?

• Use Mathematica or a similarly sophisticated math tool

• Guess a solution and use a proof by induction

• Use substitution until you see a pattern and then prove

the pattern by induction

• Use a recurrence tree

• Use the Master Theorem (from the book)

Analysis of Quicksort
• Substitution Method:

T(n) = 2T(
n
2

) + cn

= 2 (2T(
n
4

+ c
n
2) + cn = 4T(

n
4

) + cn + cn

= 4 (2T(
n
8

) + c
n
4) + cn + cn = 8T(

n
8

) + cn + cn + cn

= ⋮
= C + cn + … + cn + cn + cn

Analysis of Quicksort
•

• How many addend ?

• We get an addend each time we divide by 2

• Can divide before getting 1

• Therefore:

•

T(n) = C + cn + … + cn + cn + cn
cn

n log2(n)

T(n) = log2(n)cn + C = O(log(n)n)

Analysis of Quicksort
• Now we need to prove it.

• We start with the induction step

• Hypothesis:

• To show:

• That is awkward, so we do not do this

• Use STRONG INDUCTION instead

• Hypothesis: for all

• To show:

• This one can use the recursion

• Notice, we did not specify

T(n) ≤ C log2(n)n
T(n + 1) ≤ C log2(n + 1)(n + 1)

T(m) ≤ C log2(m)m m < n
T(n) ≤ C log2(n)n

C > 0

Analysis of Quicksort
• We calculate:

 (Recurrence formula with a different c)

 (Using the strong hypothesis)

 IF the right parenthesis is negative

• by adding and subtracting the desired expression

T(n) = 2T(
n
2

) + cn

≤ C log2(
n
2

)
n
2

+ cn

= C(log2(n) − 1)
n
2

+ cn

≤ C(log2(
n
2

)
n
2

+ cn

= C log2(n)n + (cn − C log2(n)
n
2

)

≤ C log2(n)n

Analysis of Quicksort
• The correction should be negative:

• which is true if and .

• We also need to make C large enough so that .

• Exact analysis is mathematically more involved!

cn − C log2(n)
n
2

≤ 0

⟺ cn ≤ C log2(n)
n
2

⟺ 2c ≤ C log2(n)
n ≥ 4 C ≥ c

T(2) ≤ C

Tower of Hanoi
• n disks of n different parameters are on Peg A.

• Need to move them to Peg C subject to

• Can only one disk at a time

• Can only place smaller disk on bigger ones

Tower of Hanoi: Algorithm
• Recursive Solution

• One disk: Just move the disk (1 move)

• General case: Move top n-1 disks from A to C. Move
remaining disk to B. Move n-1 disks from C to A

Tower of Hanoi: Evaluation
• If is the number of moves for n disks, then

•

T(n)

T(1) = 1 T(n + 1) = 2T(n) + 1

Solving the recurrence
T(n) = 2T(n − 1) + 1

= 2(2T(n − 2) + 1) + 1 = 4T(n − 2) + 2 + 1

= 23T(n − 3) + 4 + 2 + 1

= 24T(n − 4) + 23 + 22 + 1

= ⋮

= 2n−1 + 2n−2 + …22 + 21 + 20

= 2n − 1

Tower of Hanoi:
Proof

• Given the recurrence relation

• Show that

• Proof by induction:

• Base case: For , we have

• Induction step:

• Hypothesis:

• To show:

• Proof:

T(1) = 1; T(n + 1) = 2T(n) + 1
T(n) = 2n − 1

n = 1 T(1) = 1 = 21 − 1

T(n) = 2n − 1
T(n + 1) = 2n+1 − 1.

T(n + 1) = 2T(n) + 1 = 2(2n − 1) + 1 = 2n+1 − 2 + 1 = 2n+1 − 1

The Upper Bound Trap
• What is wrong here.

• Show that implies

• Induction base: same as before

• Induction step:

• Hypothesis:

• To show:

• Proof Attempt:

 (recurrence)

 (induction hypothesis)

• And we are stuck

T(1) = 1; T(n + 1) = 2T(n) + 1 T(n) ≤ 2n

T(n) = 2n

T(n + 1) ≤ 2n+1

T(n + 1) = 2Tn + 1
≤ 2 ⋅ 2n + 1
= 2n+1 + 1

The Upper Bound Trap
• However, we can prove a stronger proposition and the proof goes

through:

• Show that implies

• Induction base: same as before

• Induction step:

• Hypothesis:

• To show:

• Proof:

 (recurrence)

 (induction hypothesis)

• And we are done

T(1) = 1; T(n + 1) = 2T(n) + 1
T(n) ≤ 2n − 1

T(n) ≤ 2n − 1
T(n + 1) ≤ 2n+1

T(n + 1) = 2Tn + 1
≤ 2 ⋅ (2n − 1) + 1
= 2n+1 − 1

Linear Recurrence
Examples

• Pell numbers

•

• Example of linear recurrence

• Assume solution is of the form

• This results in

•

• We can divide by to get

•

•

• This means or

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2

an

an = 2an−1 + an−2

an−2

a2 = 2a + 1
⇒ a2 − 2a + 1 − 2 = 0 ⇒ (a − 1)2 = 2

a = 1 − 2 a = 1 + 2

Linear Recurrence Example
• Reversely, for these :

• Solutions are given by linear combinations

• with ,

•

• Now we need to fit the two initial conditions

•

• The first equation gives , the second gives

, which is equivalent to

• Thus, the closed form is

a an = 2an−1 + an−2

a1 = 1 + 2 a2 = 1 − 2
Pn = can

1 + dan
2

ca0
1 + da0

2 = 0,ca1
1 + da1

2 = 1
c = − d

c(1 + 2) − c(1 − 2) = 1 c =
1

2 2

Pn =
(1 + 2)n + (1 − 2)n

2 2

An ugly recurrence
• Let's look at .

• First try:

• Assume

• Induction step:

• (recurrence)

• (ind. hyp.)

• (algebra)

• (if)

T(n) = nT(n) + n
T(n) = O(n log n)

T(n) ≤ Cn log n

T(n) = n ⋅ T(n) + n
= nC n log(n) + n

= Cn
1
2

log n + n

≤ Cn log(n) n ≤ n
C
2

log n

An ugly recurrence
• Condition is true if and only if

•

• which is always true if is large enough

• Thus indeed:

• An easy proof usually means that we were not aggressive

enough

•

n ≤ n
C
2

log n

1 ≤
C
2

log(n)

n
T(n) = O(n log n)

An ugly recurrence
• Can we prove that ?

• If we assume , what happens

• (Recurrence)

• (I. H.)

•

• only if

• But this is never true for large :

T(n) = Ω(n log n)
T(n) ≥ Dn log(n)

T(n) = n ⋅ T(n) + n
≥ n ⋅ D n log(n) + n

=
D
2

n log(n) + n

≥ Dn log(n) 1 >
D
2

log(n)

n T(n) ∉ Ω(n log n)

An ugly recurrence
• Given

• Let's try whether .

• Your turn: Show that .

T(n) = nT(n) + n
T(n) = Θ(n)

T(n) ≥ n

An ugly recurrence
• Solution:

• T(n) = n ⋅ T(n) + n ≥ n

An ugly recurrence
• But can we show ?

• Your turn

T(n) = O(n)

An ugly recurrence
• Solution:

• recurrence

• I.H.

• algebra

•

•

T(n) = nT(n) + n
≤ nC n + n
= Cn + n
= C(n + 1)
≰ Cn So, we are stuck

An ugly recurrence
• Need something between and

• Let's try

• (recurrence)

•

•

•

• (log base 2)

• which works with ,

• (For the induction base we can pick C large enough)

n n log(n)
T(n) = Θ(n log(log(n))

T(n) = n ⋅ T(n) + n
≤ n ⋅ C n log(log(n)) + n

= Cn log(
log(n)

2
) + n

= Cn log(log(n)) − Cn log(2) + n
= Cn log(log n)) − Cn + n

C > 1 T(n) = O(n log(log(n))

An ugly recurrence
• Your turn:

• Show T(n) = Ω(n log(log(n))

An ugly recurrence
• Solution:

• (recurrence)

•

•

•

• (log base 2)

• which works if .

T(n) = n ⋅ T(n) + n
≥ n ⋅ D n log(log(n)) + n

= Dn log(
log(n)

2
) + n

= Dn log(log(n)) − Dn log(2) + n
= Dn log(log n)) − Dn + n

D ≤ 1

