Divide and Conquer

Maximum in a Circularly
Shifted Array

Sorted array with n integers

Shifted circularly by k positions

Find the maximum integer

Example:

e [35, 42,5, 15, 27, 29] is shifted by 2

e [87, 89, 91, 93, 99, 63, 68, 71, 73, 81] is shifted by 5

Maximum in a Circularly
Shifted Array

* You should think of binary search

Maximum in a Circularly
Shifted Array

e Divide the array into left and right half

* |n which half is the maximum?

12116(18|19(24|32|35(49|1 (3 |4 |6 | 8 |11

19(24132|135(49|1 (3|46 |8 |11|12({16|18

Maximum in a Circularly
Shifted Array

Divide the array into left and right half

In which half is the maximum?

1211611811924 (32(35(49| 1|3 |4 |6 |8 |11

19(24132|135|49|1 (3|4 |6 |8|11|12({16|18

Maximum and minimum are next to each other at the
rotation cut

Maximum in a Circularly
Shifted Array

Divide the array into left and right half

In which half is the maximum?

1211611811924 (32(35(49| 1|3 |4 |6 |8 |11

19(24132|135|49|1 (3|4 |6 |8|11|12({16|18

Maximum and minimum are next to each other at the rotation
cut

Maximum is in the half where the leftmost and the rightmost
element are not ordered

e But that is not quite true

Maximum in a Circularly
Shifted Array

Look at this case:

16 (18 (19124132 |35(49(1 (3|4 |6 |8 [11[12

Both left and right are well ordered.
Maximum is at the end of the left array

We can check this by comparing the last of the left array
with the first of the right array

Maximum in a Circularly
Shifted Array

* This gives us a recursion

left, right = lista[:len(lista)//2], listallen(lista)//2:]
1f left[0]<left[-1] and left[-1]<right[0]:

return max circular (right)
else:

return max circular (left)

e which will fail if either left or right is small

Maximum in a Circularly
Shifted Array

For the base case: left and right need to have each two
elements

list then has to have four elements

1f len(lista)<4:
return max(lista)
Is this cheating?

* Now: calculating the maximum of a list of up to four
elements happens in constant time1

Maximum in a Circularly
Shifted Array

e Runtime:

e T(n) = T(n/2)+const

Maximum in a Circularly
Shifted Array

e Runtime:

e T(n) = T(n/2)+const
e Master Theorem:

 Compare n'°%) with const

e Case 2: Runtime is ©(log,(n))

Slow Heap Builder

 What is the runtime for the following algorithm?
* Build a heap out of an array
e def SlowHeap(a, i,j):
e if i==j return a]i
* Find k such that a[k] is minimum in a[i:j+1]

e Exchange alk] and a[i

* left, right = afi+1: mid], a[mid+1:j+1 with mid =

j—i—=1_ .
| > |+

* SlowHeap(left); SlowHeap(right)

Slow Heap Builder

* At each step:

e Find minimum:

* Takes time proportional to length of the array

e Make recursive call

Slow Heap Builder

e T(n)=n+2Tn/2)

Slow Heap Builder

e Master Theorem:

« Compare n with n'°8() =y

e Case 2:

+ T(n) = O(nlog,(n))

