Repetition:
Maximum Sub-array

Problem

e Given a sequence of positive and negative integers

* Find the contiguous subarray with t

ne maximum sum

2

-5

3

14

-5

4

2

-4

3

 Proposed in 1977 by Ulf Grenander

* |n atwo-dimensional version for image recognition

Brute Force Solution

e Given al0O,...,n — 1]

e Maximize

e {sum(af[i:j]) for 1 in range(n) for j in range (i+1l,n)}

e (Costs:

e Tocalculate sum(a[i:j]) needj — i — 1 additions
n—2 n—1

D) (k—z—l)——(n — n% + 2n)

=0 j=i+1

Preprocessing

* We can preprocess the array

lets[j] = a[0]+a[l]+a[2]+... a[j-1]

= sum(al:31])

Calculating s costs n additions

Then sum(a[i:731])

alil+...+al[i-1]

Preprocessing

e Costs are now:

e Creating s, which costs time n

e Forming 1l +2+ ... + (n — 1) = n(n-1)/2 elements

Divide and Conquer

e |f the array is divided, what can happen to the maximum
sum sub-array?

* Three cases:
e Maximum sub-array in the left half
e Maximum sub-array in the right half

e Maximum sub-array straggles the divider

Divide and Conquer

e Case 1:

2 | -5 | 3 /| -5 | 4 2 | 4] 3|-2| 1 -4 1 3 |-2 |1 2 | -5 -2]| -5

e Compare the two maximum sum sub-arrays of each
half and select the bigger one

Divide and Conquer

e Case 2:

Divide and Conquer

e Case 3:

* This means we need to also consider maximum sub-
arrays that end at the left and that start at the right

* These should be determined also in the algorithm

Divide and Conquer

 Ending on the right edge:
e Case 1: Subarray part of the right half
e Case 2: Subarray straddles division

e |n this case: Need to know the sum of the elements
In the left half

Divide and Conquer

e Divide and conquer algorithm:
* Divide the array into halves
e Qut of two halves:
e (Calculate four different values:
e TJotal maximum sum sub-array
e Total maximum sum sub-array starting on left

e TJotal maximum sum sub-array ending at right

e Total sum

Divide and Conquer

* For simplicity: just calculate the maxima and not the
indices

def max sub array(lista):
#divide
left = lista[:len(lista)//2]
right = lista[len(lista)//2:]
#fcalculate and then return four values

return total, ttl from left, ttl from right, suma

Divide and Conquer

* For the calculation, we get the four values for the left and
right half

def max sub array(lista):

#divide

left = lista[:len(lista)//2]

right = lista[len(lista)//2:]

#recursive step

ltotal, 1lttl from left, 1ttl from right, lsuma
max sub array(left)

rtotal, rttl from left, rttl from right, rsuma
max sub array(right)

suma = lsuma+rsuma
#Calculate the other three return values as well

return total, ttl from left, ttl from right, suma

Divide and Conquer

e Getting the sum is easy:

e Just add up the sums of the left and right

Divide and Conquer

* How do we calculate the maximum sum sub-array from
the information in the left and right halves:

e Case 1:

 The total maximum sub-array is the maximum of the
total maximum sub-arrays of both sides

11-5(2

-3

4

5

18

2

-2

1

-1

-1

1

wlef2]1]a]s]2]1]

Divide and Conquer

e Case 2:

* The best choice is composed of the maximal one on
the left ending at the end and the one on the right
starting at the beginning

a2 [2 = s 2] I = =

Divide and Conquer

e How about starting on the left?
e Case 1: Best case is the one starting on the left
4522-3-321-72-4_-953-11

e Case 2: Best case is all of left plus the one subarray
starting on the right

4522-3-321-12-2_-953-11

o All of left gives you 9, violet part gives you 6, total is 15

 This is why we also calculate the sum of each part

Divide and Conquer

e Similarly, maximum sum sub-array ending at the end
could be:

 Best sub-array ending at the end of the left sub-array
plus all of the right half

e Just the best sub-array ending at the end of the right
half

Divide and Conquer

 Time analysis:
* At each divide step:
 We just make the recursive call
At each conquer step:

e We calculate the four values (and the bounds of the
corresponding sub-array)

e Recurrenceis T(n) = 21T(n/2) + O(1)
e MT: Compare O(1) with n'°%(?) = p!
e T(n) =0O(n)

Implementation

* |In Python, you can use tuples and tuple extraction in
order to pass several values

def maxsub(lista):
1f len(lista)==1:
return max(0,lista[0]), max(0,lista[0]), max(0,lista[0]),
lista[O0]
else:
left = lista[:len(lista)//2]
right = lista[len(lista)//2:]

ltot, lbeg, lend, lsum
rtot, rbeg, rend, rsum

maxsub (left)
maxsub (right)

return mytot, mybeg, myend, mysum

Divide and Conquer

e What are the loop invariants?

e \We calculate four values.

* Their correctness gives a conjunction of four
elements

Dynamic Programming

A dynamic programming approach:
e What happens if the array has only one element?
e |n this case, the solution Is:
e Empty array if element is negative

* The complete array if element is positive

Dynamic Programming

e What happens if one element is added?
e We need a loop invariant for this:

* |n order to design one, we need to see what might
happen:

e The new element is part of the maximum sum
sub-array, but we cannot tell yet because we have
not scanned everything

maximum sum sub-array

T

current element

Dynamic Programming

e What happens if one element is added?
e We need a loop invariant for this:

* |n order to design one, we need to see what might
happen:

* The new element is not part of the maximum sum
sub-array, but we cannot tell yet because we have
not scanned everything

T

current element

maximum sum sub-array

Dynamic Programming

e Because we have to keep both cases in mind:
 Consider two arrays:
e A1l: Best sum sub-array seen so far

e A2: Best sum sub-array ending in the new element

Dynamic Programming

e Jo maintain A1l:
* A1l stays the same

By adding the new element, the current A2 plus the
new element can become the new A"

* This can only happen if the new element is positive
(or zero)

Dynamic Programming

e Jo maintain A2:
e |f the new element is positive, we add it to A2
e |f the new element is negative, we try adding it to A2

 Only if the new sum is negative, we A2 becomes
empty

Dynamic Programming

e Example:

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(A1)=sum(A2)=6

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(A1)=6, sum(A2)=4

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(A2)=7, sum(A1) = max(6,7)=7

eeeeeeeeeeeeee

Dynamic Programming

e Example

e A2 becomes empty, sum(A1)=7

A1

A2

Dynamic Programming

e Example

e sum(A2) =1, sum(A1)=7

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(Al) =7, sum(A2) =3

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(Al)=7,sum(A2)=7

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=7, sum(A2)=4

eeeeeeeeeeeeee

Dynamic Programming

e Example

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(A1)=7, sum(A2)=2

eeeeeeeeeeeeee

Dynamic Programming

e Example

e sum(Al) =7, sum(A2)=5

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=7, sum(A2)=4

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(Al1) = sum(A2) =8

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=sum(A2)=13

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=13, sum(A2)=12

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=sum(A2)=18

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=18, sum(A2)=17

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=sum(A2)=19

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=19, sum(A2)=10

eeeeeeeeeeeeee

Dynamic Programming

e Example:

e sum(A1)=19, sum(A2)=3

eeeeeeeeeeeeee

