Rod Cutting Problem

Thomas Schwarz, SJ

Problem

- Given a long rod of length *n*
 - Cut it into sub-rods
 - Each sub-rod of length *i* has worth *w*[*i*]

- Need to identify similar sub-problems
 - Definition of sub-problems
 - Division into sub-problems
 - Solution to sub-problems
 - Merging solutions of sub-problems

- Similar sub-problems:
 - After any cut belonging to an optimal set of cuts:
 - Left and right sub-rods are cut optimally
- Therefore:
 - How to cut a rod of length n < m

- How to put the solutions together:
 - Go through all possibilities for the last cut

- This gives us:
 - Best way to cut a rod of length *n*
 - Best of:
 - Rod of length k
 - Cutting a rod of length *n*-k

• Memoized version of

best_cut(n):
return max([best_cut[n-k]+v[k] for k in arg(v)])

- Can we do better:
 - Sure, we can cut down on possibilities:
 - Order possible cuts by size
 - $k \in \arg(v)$
 - Define best cut(n, k_0) to be best cut for rod of length n with sub-cuts of length $\leq k_0$.

• best $\operatorname{cut}(n, k_0) = \max(\{\operatorname{best}\operatorname{cut}(n - r \cdot k_0, k_0 - 1) + rv[k_0]\} | r = 0, 1, 2, \ldots)$